the simplest way in 2D is to take angle 'ang', and distance 'd', and your starting point 'x' and 'y':
x1 = x + cos(ang) * distance;
y1 = y + sin(ang) * distance;
In 2D the rotation for any object can be just stored as a single value, ang.
using cos for x and sin for y is the "standard" way that almost everyone does it. cos(ang) and sin(ang) trace a circle out as ang increases. ang = 0 points right along the x-axis here, and as angle increases it spins counter-clockwise (i.e at 90 degrees it's pointing straight up). If you swap the cos and sin terms for x and y, you get ang = 0 pointing up along the y axis and clockwise rotation with increasing ang (since it's a mirror image), which could in fact be more convenient for making game, since y-axis is often the "forward" direction and you might like that increasing ang spins to the right.
x1 = x + sin(ang) * distance;
y1 = y + cos(ang) * distance;
Later you can get into vectors and matricies that do the same thing but in a more flexible manner, but cos/sin are fine to get started with in a 2D game. In a 3D game, using cos and sin for rotations starts to break down in certain circumstances, and you start really benefiting from learning the matrix-based approaches.
A
using trig if you already know where it'll end up? Please clearly define the given information and consider moving the question to somewhere more appropriate such as the math stack exchange, as this has nothing to do with programming or c++. – Designing