How to reduce the size of merged PDF/A-1b files with pdfbox or other java library
Asked Answered
P

3

6

Input: A list of (e.g. 14) PDF/A-1b files with embedded fonts.
Processing: Doing a simple merge with Apache PDFBOX.
Result: 1 PDF/A-1b file with large (too large) file size. (It is almost the sum of the size of all the source files).

Question: Is there a way to reduce the file size of the resulting PDF?
Idea: Remove redundant embedded fonts. But how to? And is it the right way to do?

Unfortunately the following code is not doing the job, but is highlighting the obvious problem.

try (PDDocument document = PDDocument.load(new File("E:/tmp/16189_ZU_20181121195111_5544_2008-12-31_Standardauswertung.pdf"))) {
    List<COSName> collectedFonts = new ArrayList<>();
    PDPageTree pages = document.getDocumentCatalog().getPages();
    int pageNr = 0;
    for (PDPage page : pages) {
        pageNr++;
        Iterable<COSName> names = page.getResources().getFontNames();
        System.out.println("Page " + pageNr);
        for (COSName name : names) {
            collectedFonts.add(name);
            System.out.print("\t" + name + " - ");
            PDFont font = page.getResources().getFont(name);
            System.out.println(font + ", embedded: " + font.isEmbedded());
            page.getCOSObject().removeItem(COSName.F);
            page.getResources().getCOSObject().removeItem(name);
        }
    }
    document.save("E:/tmp/output.pdf");
}

The code produces an output like that:

Page 1
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 2
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 3
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 4
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 5
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 6
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 7
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 8
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 9
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 10
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 11
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F33} - PDTrueTypeFont ArialMT-BoldItalic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 12
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 13
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true
Page 14
    COSName{F23} - PDTrueTypeFont ArialMT-Bold, embedded: true
    COSName{F25} - PDTrueTypeFont ArialMT-Italic, embedded: true
    COSName{F27} - PDTrueTypeFont ArialMT-Regular, embedded: true

Any help appreciated ...

Pika answered 21/11, 2018 at 20:55 Comment(13)
Are the fonts embedded fully? Or as subsets?Bentham
@Bentham from the output it looks as if they're fully embedded. So if the files are all from the same source, and have the same dictionary, then one could really replace the objects in the fonts resources.Sempstress
After merging make sure to check the result file with preflight to be sure it is still PDF/A. I remember I had a problem years ago involving multiple output intents.Sempstress
@Bentham like Tilman gessed, I am almost quite sure that they are embedded fullyPika
@Tilman Yes, it looks like that. But I've also seen other PDFs in which the subset prefix was missing but still only subsets were embedded. @ hab can you share two or three example files?Bentham
dummy.pdf (datentransfer.sparkassenverlag.de/my/transfers/…) is an example filePika
datentransfer.sparkassenverlag.de/my/transfers/… - "Die angeforderte Seite konnte nicht gefunden werden." Oh, Fünf Sekunden später klappte es.Bentham
Ok, the fonts indeed are completely embedded. And identically. Files like that can be optimized without too much effort. I'll try and find some time for a working answer.Bentham
I know that iText has the functionality with PdfSmartCopy to recognize that and reuse those resources. In the past I especially thought that in the area of fonts there is much room for improvement...Meggs
@Meggs I tried with itext 7, but didn't work: File outPdf = new File("D:/unfortunatelyNoSmallerPdf.pdf"); PdfWriter pdfWriter = new PdfWriter(outPdf); pdfWriter.setSmartMode(true); pdfWriter.setCompressionLevel(5); PdfDocument pdfDoc = new PdfDocument(new PdfReader(bigPdf), pdfWriter); pdfDoc.close();Pika
@Bentham any idea of how to solve? Still can't find any working solution.Pika
@Pika Didn't use iText 7 yet (just iText 2 and 5). Looking at the description itextsupport.com/apidocs/itext5/5.5.9/com/itextpdf/text/pdf/… it should work.Meggs
@Pika iText (both 5 and 7) should remove the duplicate font streams away during the merge but it does not have an explicit API method to optimize a single file with duplicates inside.Bentham
D
6

When debugging in the file, I recognized that the font files for the same fonts were referenced several times. So replacing the actual font file item in the dictionary with an already viewed font file item, the reference was removed and compression could be done. By that, I was able to shrink a 30 MB File to around 6 MB.

    File file = new File("test.pdf");

    PDDocument doc = PDDocument.load(file);
    Map<String, COSBase> fontFileCache = new HashMap<>();
    for (int pageNumber = 0; pageNumber < doc.getNumberOfPages(); pageNumber++) {
        final PDPage page = doc.getPage(pageNumber);
        COSDictionary pageDictionary = (COSDictionary) page.getResources().getCOSObject().getDictionaryObject(COSName.FONT);
        for (COSName currentFont : pageDictionary.keySet()) {
            COSDictionary fontDictionary = (COSDictionary) pageDictionary.getDictionaryObject(currentFont);
            for (COSName actualFont : fontDictionary.keySet()) {
                COSBase actualFontDictionaryObject = fontDictionary.getDictionaryObject(actualFont);
                if (actualFontDictionaryObject instanceof COSDictionary) {
                    COSDictionary fontFile = (COSDictionary) actualFontDictionaryObject;
                    if (fontFile.getItem(COSName.FONT_NAME) instanceof COSName) {
                        COSName fontName = (COSName) fontFile.getItem(COSName.FONT_NAME);
                        fontFileCache.computeIfAbsent(fontName.getName(), key -> fontFile.getItem(COSName.FONT_FILE2));
                        fontFile.setItem(COSName.FONT_FILE2, fontFileCache.get(fontName.getName()));
                    }
                }
            }
        }
    }

    final ByteArrayOutputStream baos = new ByteArrayOutputStream();
    doc.save(baos);
    final File compressed = new File("test_compressed.pdf");
    baos.writeTo(new FileOutputStream(compressed));

Maybe this is not the most elegant way to do that, but it works and keeps the PDF/A-1b compatibility.

Dichroite answered 30/11, 2018 at 2:40 Comment(4)
This only works if a all font programs embedded for the same name indeed are identical, and if b all fonts to consider are in the immediate page resources, not the resources of some referred to xobject or pattern. If those conditions are fulfilled, though, it very likely is much faster than the approach in my answer.Bentham
I just compared the results for the example PDF you shared. Original PDF size: 6561805. Result size, your code: 788470. Result size, my code: 691147. Thus, even though there still is some more optimization potential, your shorter and faster code does remove the major duplicates, too.Bentham
Thanks for your investigations! Is the file with your code still PDF/A-1b compatible?Dichroite
"Is the file with your code still PDF/A-1b compatible?" - in case of your example file Adobe Acrobat 9.5 Preflight says it is.Bentham
B
16

The code in this answer is an attempt to optimize documents like the OP's example document, i.e. documents containing copies of exactly identical objects, in the case at hand completely identical, fully embedded fonts. It does not merge merely nearly identical objects, e.g. multiple subsets of the same font into one single union subset.

In the course of comments to the questions it became clear that the duplicate fonts in the OP's PDF indeed were identical full copies of a source font file. To merge such duplicate objects, one has to collect the complex objects (arrays, dictionaries, streams) of a document, compare them with each other, and then merge duplicates.

As actual pairwise comparison of all complex objects of a document can take too much time in case of large documents, the following code calculates a hash of these objects and only compares objects with identical hash.

To merge duplicates, the code selects one of the duplicates and replaces all references to any of the other duplicates with a reference to the chosen one, removing the other duplicates from the document object pool. To do this more effectively, the code initially not only collects all complex objects but also all references to each of them.

The optimization code

This is the method to call to optimize a PDDocument:

public void optimize(PDDocument pdDocument) throws IOException {
    Map<COSBase, Collection<Reference>> complexObjects = findComplexObjects(pdDocument);
    for (int pass = 0; ; pass++) {
        int merges = mergeDuplicates(complexObjects);
        if (merges <= 0) {
            System.out.printf("Pass %d - No merged objects\n\n", pass);
            break;
        }
        System.out.printf("Pass %d - Merged objects: %d\n\n", pass, merges);
    }
}

(OptimizeAfterMerge method under test)

The optimization takes multiple passes as the equality of some objects can only be recognized after duplicates they reference have been merged.

The following helper methods and classes collect the complex objects of a PDF and the references to each of them:

Map<COSBase, Collection<Reference>> findComplexObjects(PDDocument pdDocument) {
    COSDictionary catalogDictionary = pdDocument.getDocumentCatalog().getCOSObject();
    Map<COSBase, Collection<Reference>> incomingReferences = new HashMap<>();
    incomingReferences.put(catalogDictionary, new ArrayList<>());

    Set<COSBase> lastPass = Collections.<COSBase>singleton(catalogDictionary);
    Set<COSBase> thisPass = new HashSet<>();
    while(!lastPass.isEmpty()) {
        for (COSBase object : lastPass) {
            if (object instanceof COSArray) {
                COSArray array = (COSArray) object;
                for (int i = 0; i < array.size(); i++) {
                    addTarget(new ArrayReference(array, i), incomingReferences, thisPass);
                }
            } else if (object instanceof COSDictionary) {
                COSDictionary dictionary = (COSDictionary) object;
                for (COSName key : dictionary.keySet()) {
                    addTarget(new DictionaryReference(dictionary, key), incomingReferences, thisPass);
                }
            }
        }
        lastPass = thisPass;
        thisPass = new HashSet<>();
    }
    return incomingReferences;
}

void addTarget(Reference reference, Map<COSBase, Collection<Reference>> incomingReferences, Set<COSBase> thisPass) {
    COSBase object = reference.getTo();
    if (object instanceof COSArray || object instanceof COSDictionary) {
        Collection<Reference> incoming = incomingReferences.get(object);
        if (incoming == null) {
            incoming = new ArrayList<>();
            incomingReferences.put(object, incoming);
            thisPass.add(object);
        }
        incoming.add(reference);
    }
}

(OptimizeAfterMerge helper methods findComplexObjects and addTarget)

interface Reference {
    public COSBase getFrom();

    public COSBase getTo();
    public void setTo(COSBase to);
}

static class ArrayReference implements Reference {
    public ArrayReference(COSArray array, int index) {
        this.from = array;
        this.index = index;
    }

    @Override
    public COSBase getFrom() {
        return from;
    }

    @Override
    public COSBase getTo() {
        return resolve(from.get(index));
    }

    @Override
    public void setTo(COSBase to) {
        from.set(index, to);
    }

    final COSArray from;
    final int index;
}

static class DictionaryReference implements Reference {
    public DictionaryReference(COSDictionary dictionary, COSName key) {
        this.from = dictionary;
        this.key = key;
    }

    @Override
    public COSBase getFrom() {
        return from;
    }

    @Override
    public COSBase getTo() {
        return resolve(from.getDictionaryObject(key));
    }

    @Override
    public void setTo(COSBase to) {
        from.setItem(key, to);
    }

    final COSDictionary from;
    final COSName key;
}

(OptimizeAfterMerge helper interface Reference with implementations ArrayReference and DictionaryReference)

And the following helper methods and classes finally identify and merge duplicates:

int mergeDuplicates(Map<COSBase, Collection<Reference>> complexObjects) throws IOException {
    List<HashOfCOSBase> hashes = new ArrayList<>(complexObjects.size());
    for (COSBase object : complexObjects.keySet()) {
        hashes.add(new HashOfCOSBase(object));
    }
    Collections.sort(hashes);

    int removedDuplicates = 0;
    if (!hashes.isEmpty()) {
        int runStart = 0;
        int runHash = hashes.get(0).hash;
        for (int i = 1; i < hashes.size(); i++) {
            int hash = hashes.get(i).hash;
            if (hash != runHash) {
                int runSize = i - runStart;
                if (runSize != 1) {
                    System.out.printf("Equal hash %d for %d elements.\n", runHash, runSize);
                    removedDuplicates += mergeRun(complexObjects, hashes.subList(runStart, i));
                }
                runHash = hash;
                runStart = i;
            }
        }
        int runSize = hashes.size() - runStart;
        if (runSize != 1) {
            System.out.printf("Equal hash %d for %d elements.\n", runHash, runSize);
            removedDuplicates += mergeRun(complexObjects, hashes.subList(runStart, hashes.size()));
        }
    }
    return removedDuplicates;
}

int mergeRun(Map<COSBase, Collection<Reference>> complexObjects, List<HashOfCOSBase> run) {
    int removedDuplicates = 0;

    List<List<COSBase>> duplicateSets = new ArrayList<>();
    for (HashOfCOSBase entry : run) {
        COSBase element = entry.object;
        for (List<COSBase> duplicateSet : duplicateSets) {
            if (equals(element, duplicateSet.get(0))) {
                duplicateSet.add(element);
                element = null;
                break;
            }
        }
        if (element != null) {
            List<COSBase> duplicateSet = new ArrayList<>();
            duplicateSet.add(element);
            duplicateSets.add(duplicateSet);
        }
    }

    System.out.printf("Identified %d set(s) of identical objects in run.\n", duplicateSets.size());

    for (List<COSBase> duplicateSet : duplicateSets) {
        if (duplicateSet.size() > 1) {
            COSBase surviver = duplicateSet.remove(0);
            Collection<Reference> surviverReferences = complexObjects.get(surviver);
            for (COSBase object : duplicateSet) {
                Collection<Reference> references = complexObjects.get(object);
                for (Reference reference : references) {
                    reference.setTo(surviver);
                    surviverReferences.add(reference);
                }
                complexObjects.remove(object);
                removedDuplicates++;
            }
            surviver.setDirect(false);
        }
    }

    return removedDuplicates;
}

boolean equals(COSBase a, COSBase b) {
    if (a instanceof COSArray) {
        if (b instanceof COSArray) {
            COSArray aArray = (COSArray) a;
            COSArray bArray = (COSArray) b;
            if (aArray.size() == bArray.size()) {
                for (int i=0; i < aArray.size(); i++) {
                    if (!resolve(aArray.get(i)).equals(resolve(bArray.get(i))))
                        return false;
                }
                return true;
            }
        }
    } else if (a instanceof COSDictionary) {
        if (b instanceof COSDictionary) {
            COSDictionary aDict = (COSDictionary) a;
            COSDictionary bDict = (COSDictionary) b;
            Set<COSName> keys = aDict.keySet();
            if (keys.equals(bDict.keySet())) {
                for (COSName key : keys) {
                    if (!resolve(aDict.getItem(key)).equals(bDict.getItem(key)))
                        return false;
                }
                // In case of COSStreams we strictly speaking should
                // also compare the stream contents here. But apparently
                // their hashes coincide well enough for the original
                // hashing equality, so let's just assume...
                return true;
            }
        }
    }
    return false;
}

static COSBase resolve(COSBase object) {
    while (object instanceof COSObject)
        object = ((COSObject)object).getObject();
    return object;
}

(OptimizeAfterMerge helper methods mergeDuplicates, mergeRun, equals, and resolve)

static class HashOfCOSBase implements Comparable<HashOfCOSBase> {
    public HashOfCOSBase(COSBase object) throws IOException {
        this.object = object;
        this.hash = calculateHash(object);
    }

    int calculateHash(COSBase object) throws IOException {
        if (object instanceof COSArray) {
            int result = 1;
            for (COSBase member : (COSArray)object)
                result = 31 * result + member.hashCode();
            return result;
        } else if (object instanceof COSDictionary) {
            int result = 3;
            for (Map.Entry<COSName, COSBase> entry : ((COSDictionary)object).entrySet())
                result += entry.hashCode();
            if (object instanceof COSStream) {
                try (   InputStream data = ((COSStream)object).createRawInputStream()   ) {
                    MessageDigest md = MessageDigest.getInstance("MD5");
                    byte[] buffer = new byte[8192];
                    int bytesRead = 0;
                    while((bytesRead = data.read(buffer)) >= 0)
                        md.update(buffer, 0, bytesRead);
                    result = 31 * result + Arrays.hashCode(md.digest());
                } catch (NoSuchAlgorithmException e) {
                    throw new IOException(e);
                }
            }
            return result;
        } else {
            throw new IllegalArgumentException(String.format("Unknown complex COSBase type %s", object.getClass().getName()));
        }
    }

    final COSBase object;
    final int hash;

    @Override
    public int compareTo(HashOfCOSBase o) {
        int result = Integer.compare(hash,  o.hash);
        if (result == 0)
            result = Integer.compare(hashCode(), o.hashCode());
        return result;
    }
}

(OptimizeAfterMerge helper class HashOfCOSBase)

Applying the code to the OP's example document

The OP's example document is about 6.5 MB in size. Applying the above code like this

PDDocument pdDocument = PDDocument.load(SOURCE);

optimize(pdDocument);

pdDocument.save(RESULT);

results in a PDF less than 700 KB in size, and it appears to be complete.

(If something's missing, please tell, I'll try and fix that.)

Words of warning

On one hand this optimizer will not recognize all identical duplicates. In particular in case of circular references duplicate circles of objects won't be recognized because the code only recognizes duplicates if their contents are identical which usually does not happen in duplicate object circles.

On the other hand this optimizer might already be overly eager in some cases because some duplicates might be needed as separate objects for PDF viewers to accept each instance as an individual entity.

Furthermore, this program touches all kinds of objects in the file, even those defining the inner structures of the PDF, but it does not attempt to update any PDFBox classes managing this structure (PDDocument, PDDocumentCatalog, PDAcroForm, ...). To not have any pending changes screw up the whole document, therefore, please only apply this program to freshly loaded, unmodified PDDocument instances and save it soon after without further ado.

Bentham answered 29/11, 2018 at 17:18 Comment(19)
Thank you, the code seems do do the job, too. As I was forced to provide a solution very quickly last week I chose to adopt the solution of schowave, as his view lines solution worked for me and my PDFs. BTW: In the meantime I found a working solution usint ITEXT 7, I'm going post a code example tomorrow.Pika
@Bentham please can you give your expertise here and explain why it not works in this form only pdf 59Ko with you compression I reduce it only -1% while when I try on online website like pdfcompressor i get -64% here is pdf file compressed with pdfcompressor I know your compression not cover all but maybe you can help me to investigate & give feedback. thank you. Maybe this image can helpNickerson
@bee As you see in your image, the compressor removed the complete XObject resources. Why did it do so in spite of a XObject being in there? Because it checked whether the XObjects actually are used on the page in question which they are not in case of your file. Thus, this is a completely different strategy from the removal of duplicate objects after a merge in my answer above, this is a cleaning-up strategy for PDFs the former processor left completely unused objects in. As mentioned elsewhere, a generic PDF compressor must implement multiple strategies.Bentham
i create this AcroForm only pdf from another pdf using this technique but it seem acroform from source contain all theses XObjects I don't need anymore in new pdf. Do you know how can I remove complet XObject in pdfbox?. Otherwise the better will be is there any chance in pdfbox to know if this xobject is used in page. thank for consideration/investigationNickerson
Please make that a separate stack overflow question in its own right. Stack overflow is meant to be a q&a resource for easy lookup. Thus, questions of general interest should be asked as questions, not comments.Bentham
Works great! 47 MB -> 5 MB You should add this to the apache library! And I owe you a coffee now.Cellulitis
This works really well for me, mostly, but there seems to be an issue with the equals() method - the comment saying "In case of COSStreams we strictly speaking should also compare the stream contents here. But apparently their hashes coincide well enough for the original hashing equality" probably misses the mark...Premillenarian
If you can share a PDF to illustrate the issue, I may be able to improve the code.Bentham
calcresult.com/transfer/… Only opens as far as page 6...Premillenarian
Is that an output or an input?Bentham
That is a broken output file. In that example, it is combined from five PDF's each of two pages, each of which were generated from the same (pair of) Word mail-merge template files.Premillenarian
OK. Then this is a case of the second paragraph in my words of warning section: some of the identical pages were indeed recognized by the code as such and the page objects in those cases were replaced by the same one now occurring multiple times in the pages tree of the document. Unfortunately Adobe Acrobat does not like such duplicate entries in the pages tree.Bentham
Thanks @Bentham I don't think I understand enough about PDF structure to understand your warnings, but to summarise, this simply isn't a suitable strategy for my specific needs?Premillenarian
If you have identical page objects, you cannot use the code as is. But there is an easy way to disambiguate page objects, iterate over the pages and set a unique value therein, e.g. a custom key to the current page number. Thereafter the code above won't make all those page objects a single one.Bentham
Let us continue this discussion in chat.Premillenarian
I want to compress the document while performing the merge operation. When we perform merge operation using pdfbox it is not compressing the document while merging due to which I am getting heap space error. Can anyone help me with this problem? #74666273Antidote
@SanketGupta You can try merging smaller batches (maybe a hundred or a thousand pages) and running the results though the code presented in my answer here. If there are enough duplicate objects in your source pages, this may reduce the size of these partial merges enough to eventually be able to merge them into one final result. Whether this works or not, depends entirely on the character of the source files your try to merge.Bentham
@Bentham your code is working fine for me but the main issue I am facing is with time complexity. When I am applying optimization code after every merge it is taking lot of time to process as the number of page keep on increasing after every merge (For 44k pages it is taking 1 hour).Antidote
@SanketGupta Well, you can of course try and combine the PDFBox merge utility with an optimization as above, identifying duplicate objects and replacing them upon import from the merged file. Doing so properly is non-trivial, though. I definitively won't have the time this year to look into that.Bentham
D
6

When debugging in the file, I recognized that the font files for the same fonts were referenced several times. So replacing the actual font file item in the dictionary with an already viewed font file item, the reference was removed and compression could be done. By that, I was able to shrink a 30 MB File to around 6 MB.

    File file = new File("test.pdf");

    PDDocument doc = PDDocument.load(file);
    Map<String, COSBase> fontFileCache = new HashMap<>();
    for (int pageNumber = 0; pageNumber < doc.getNumberOfPages(); pageNumber++) {
        final PDPage page = doc.getPage(pageNumber);
        COSDictionary pageDictionary = (COSDictionary) page.getResources().getCOSObject().getDictionaryObject(COSName.FONT);
        for (COSName currentFont : pageDictionary.keySet()) {
            COSDictionary fontDictionary = (COSDictionary) pageDictionary.getDictionaryObject(currentFont);
            for (COSName actualFont : fontDictionary.keySet()) {
                COSBase actualFontDictionaryObject = fontDictionary.getDictionaryObject(actualFont);
                if (actualFontDictionaryObject instanceof COSDictionary) {
                    COSDictionary fontFile = (COSDictionary) actualFontDictionaryObject;
                    if (fontFile.getItem(COSName.FONT_NAME) instanceof COSName) {
                        COSName fontName = (COSName) fontFile.getItem(COSName.FONT_NAME);
                        fontFileCache.computeIfAbsent(fontName.getName(), key -> fontFile.getItem(COSName.FONT_FILE2));
                        fontFile.setItem(COSName.FONT_FILE2, fontFileCache.get(fontName.getName()));
                    }
                }
            }
        }
    }

    final ByteArrayOutputStream baos = new ByteArrayOutputStream();
    doc.save(baos);
    final File compressed = new File("test_compressed.pdf");
    baos.writeTo(new FileOutputStream(compressed));

Maybe this is not the most elegant way to do that, but it works and keeps the PDF/A-1b compatibility.

Dichroite answered 30/11, 2018 at 2:40 Comment(4)
This only works if a all font programs embedded for the same name indeed are identical, and if b all fonts to consider are in the immediate page resources, not the resources of some referred to xobject or pattern. If those conditions are fulfilled, though, it very likely is much faster than the approach in my answer.Bentham
I just compared the results for the example PDF you shared. Original PDF size: 6561805. Result size, your code: 788470. Result size, my code: 691147. Thus, even though there still is some more optimization potential, your shorter and faster code does remove the major duplicates, too.Bentham
Thanks for your investigations! Is the file with your code still PDF/A-1b compatible?Dichroite
"Is the file with your code still PDF/A-1b compatible?" - in case of your example file Adobe Acrobat 9.5 Preflight says it is.Bentham
P
2

An other way I found is using ITEXT 7 that way (pdfWriter.setSmartMode):

    try (PdfWriter pdfWriter = new PdfWriter(out)) {
        pdfWriter.setSmartMode(true); // Here happens the optimation, e.g. reducing redundantly embedded fonts
        pdfWriter.setCompressionLevel(Deflater.BEST_COMPRESSION);
        try (PdfDocument pdfDoc = new PdfADocument(pdfWriter, PdfAConformanceLevel.PDF_A_1B,
                new PdfOutputIntent("Custom", "", "http://www.color.org", "sRGB IEC61966-2.1", colorProfile))) {
            PdfMerger merger = new PdfMerger(pdfDoc);
            merger.setCloseSourceDocuments(true);
            try {
                for (InputStream pdf : pdfs) {
                    try (PdfDocument doc = new PdfDocument(new PdfReader(pdf))) {
                        merger.merge(doc, createPageList(doc.getNumberOfPages()));
                    }
                }
                merger.close();
            }
            catch (com.itextpdf.kernel.crypto.BadPasswordException e) {
                throw new BieneException("Konkatenierung eines passwortgeschützten PDF-Dokumentes nicht möglich: " + e.getMessage(),
                        e);
            }
            catch (com.itextpdf.io.IOException | PdfException e) {
                throw new BieneException(e.getMessage(), e);
            }
        }
    }
Pika answered 29/1, 2019 at 20:41 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.