Creating a daemon in Linux
Asked Answered
E

9

144

In Linux I want to add a daemon that cannot be stopped and which monitors filesystem changes. If any changes are detected, it should write the path to the console where it was started plus a newline.

I already have the filesystem changing code almost ready but I cannot figure out how to create a daemon.

My code is from here: http://www.yolinux.com/TUTORIALS/ForkExecProcesses.html

What to do after the fork?

int main (int argc, char **argv) {

  pid_t pID = fork();
  if (pID == 0)  {              // child
          // Code only executed by child process    
      sIdentifier = "Child Process: ";
    }
    else if (pID < 0) {
        cerr << "Failed to fork" << endl;
        exit(1);
       // Throw exception
    }
    else                                   // parent
    {
      // Code only executed by parent process

      sIdentifier = "Parent Process:";
    }       

    return 0;
}
Epsilon answered 30/7, 2013 at 18:17 Comment(3)
Possible duplicate: https://mcmap.net/q/161156/-how-to-make-a-daemon-process/1076451Output
possible duplicate of: #5384668 for the daemonize part, #931593 for the filesystem watchFirearm
If you don't need POSIX compliance you may be interested in inotify API. See: inotify_init, inotify_add_watch, inotify_rm_watch.Pileup
P
274

In Linux i want to add a daemon that cannot be stopped and which monitors filesystem changes. If any changes would be detected it should write the path to the console where it was started + a newline.

Daemons work in the background and (usually...) don't belong to a TTY that's why you can't use stdout/stderr in the way you probably want. Usually a syslog daemon (syslogd) is used for logging messages to files (debug, error,...).

Besides that, there are a few required steps to daemonize a process.


If I remember correctly these steps are:

  • fork off the parent process & let it terminate if forking was successful. -> Because the parent process has terminated, the child process now runs in the background.
  • setsid - Create a new session. The calling process becomes the leader of the new session and the process group leader of the new process group. The process is now detached from its controlling terminal (CTTY).
  • Catch signals - Ignore and/or handle signals.
  • fork again & let the parent process terminate to ensure that you get rid of the session leading process. (Only session leaders may get a TTY again.)
  • chdir - Change the working directory of the daemon.
  • umask - Change the file mode mask according to the needs of the daemon.
  • close - Close all open file descriptors that may be inherited from the parent process.

To give you a starting point: Look at this skeleton code that shows the basic steps. This code can now also be forked on GitHub: Basic skeleton of a linux daemon

/*
 * daemonize.c
 * This example daemonizes a process, writes a few log messages,
 * sleeps 20 seconds and terminates afterwards.
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <syslog.h>

static void skeleton_daemon()
{
    pid_t pid;

    /* Fork off the parent process */
    pid = fork();

    /* An error occurred */
    if (pid < 0)
        exit(EXIT_FAILURE);

    /* Success: Let the parent terminate */
    if (pid > 0)
        exit(EXIT_SUCCESS);

    /* On success: The child process becomes session leader */
    if (setsid() < 0)
        exit(EXIT_FAILURE);

    /* Catch, ignore and handle signals */
    //TODO: Implement a working signal handler */
    signal(SIGCHLD, SIG_IGN);
    signal(SIGHUP, SIG_IGN);

    /* Fork off for the second time*/
    pid = fork();

    /* An error occurred */
    if (pid < 0)
        exit(EXIT_FAILURE);

    /* Success: Let the parent terminate */
    if (pid > 0)
        exit(EXIT_SUCCESS);

    /* Set new file permissions */
    umask(0);

    /* Change the working directory to the root directory */
    /* or another appropriated directory */
    chdir("/");

    /* Close all open file descriptors */
    int x;
    for (x = sysconf(_SC_OPEN_MAX); x>=0; x--)
    {
        close (x);
    }

    /* Open the log file */
    openlog ("firstdaemon", LOG_PID, LOG_DAEMON);
}
int main()
{
    skeleton_daemon();

    while (1)
    {
        //TODO: Insert daemon code here.
        syslog (LOG_NOTICE, "First daemon started.");
        sleep (20);
        break;
    }

    syslog (LOG_NOTICE, "First daemon terminated.");
    closelog();

    return EXIT_SUCCESS;
}


  • Compile the code: gcc -o firstdaemon daemonize.c
  • Start the daemon: ./firstdaemon
  • Check if everything is working properly: ps -xj | grep firstdaemon

  • The output should be similar to this one:

+------+------+------+------+-----+-------+------+------+------+-----+
| PPID | PID  | PGID | SID  | TTY | TPGID | STAT | UID  | TIME | CMD |
+------+------+------+------+-----+-------+------+------+------+-----+
|    1 | 3387 | 3386 | 3386 | ?   |    -1 | S    | 1000 | 0:00 | ./  |
+------+------+------+------+-----+-------+------+------+------+-----+

What you should see here is:

  • The daemon has no controlling terminal (TTY = ?)
  • The parent process ID (PPID) is 1 (The init process)
  • The PID != SID which means that our process is NOT the session leader
    (because of the second fork())
  • Because PID != SID our process can't take control of a TTY again

Reading the syslog:

  • Locate your syslog file. Mine is here: /var/log/syslog
  • Do a: grep firstdaemon /var/log/syslog

  • The output should be similar to this one:

  firstdaemon[3387]: First daemon started.
  firstdaemon[3387]: First daemon terminated.


A note: In reality you would also want to implement a signal handler and set up the logging properly (Files, log levels...).

Further reading:

Puga answered 30/7, 2013 at 18:57 Comment(13)
Wow Thanks! Thats great. So i have to put my code into the while Loop and thats it?Epsilon
Basically, yes. But this code is just an example. It entirely depends on what you want to achieve using a daemon process. Be sure to read this answer too: @EdwinPuga
Instead of the second fork(), why not just use setsid()?Output
@Output If you use setsid instead of fork for the second time you would get the opposite of what you want...Puga
Note that The sigaction() function provides a more comprehensive and reliable mechanism for controlling signals; new applications should use sigaction() rather than signal().Pileup
@PascalWerkl What do you mean by our process cannot take control of a tty again? Why can't any process get attached to a tty?Dignitary
@PascalWerkl Not sure if I understand what you mean by "If you use setsid() instead of fork for the second time you would get the opposite of what you want". Can you elaborate on that? Do you mean that it will not be a daemon process if you do not fork twice?Eggcup
Fantastic answer ...systemd also complained until my daemon created a PID file ...just before the umask() call I added FILE* fh = fopen("/var/run/First.pid", "wb"); fprintf(fh, "%d", pid = getpid()); fclose(fh); (add error checking for file open)Schreiner
Should the daemon call setuid? I guess the daemon must release all it's root priveleges.Cloverleaf
When you release the descriptors, shouldn't the loop run until it reaches 0 so it closes the descriptor with number 0? You have > 0 but shouldn't there be >= 0?Benison
Why PPID is not 1 when I executed this code in my system? I think it's displaying systemd pid instead of init.Febricity
Should be noted to viewers that this method is the "old" way. The new recommended way to create a daemon is with the "new style daemon" found here: 0pointer.de/public/systemd-man/daemon.html#New-Style%20Daemons orSterne
Where should the logs appear on MacOS? Looking in /var/log/system.log, but not seeing them there.Matte
P
45

man 7 daemon describes how to create daemon in great detail. My answer is just excerpt from this manual.

There are at least two types of daemons:

  1. traditional SysV daemons (old-style),
  2. systemd daemons (new-style).

SysV Daemons

If you are interested in traditional SysV daemon, you should implement the following steps:

  1. Close all open file descriptors except standard input, output, and error (i.e. the first three file descriptors 0, 1, 2). This ensures that no accidentally passed file descriptor stays around in the daemon process. On Linux, this is best implemented by iterating through /proc/self/fd, with a fallback of iterating from file descriptor 3 to the value returned by getrlimit() for RLIMIT_NOFILE.
  2. Reset all signal handlers to their default. This is best done by iterating through the available signals up to the limit of _NSIG and resetting them to SIG_DFL.
  3. Reset the signal mask using sigprocmask().
  4. Sanitize the environment block, removing or resetting environment variables that might negatively impact daemon runtime.
  5. Call fork(), to create a background process.
  6. In the child, call setsid() to detach from any terminal and create an independent session.
  7. In the child, call fork() again, to ensure that the daemon can never re-acquire a terminal again.
  8. Call exit() in the first child, so that only the second child (the actual daemon process) stays around. This ensures that the daemon process is re-parented to init/PID 1, as all daemons should be.
  9. In the daemon process, connect /dev/null to standard input, output, and error.
  10. In the daemon process, reset the umask to 0, so that the file modes passed to open(), mkdir() and suchlike directly control the access mode of the created files and directories.
  11. In the daemon process, change the current directory to the root directory (/), in order to avoid that the daemon involuntarily blocks mount points from being unmounted.
  12. In the daemon process, write the daemon PID (as returned by getpid()) to a PID file, for example /run/foobar.pid (for a hypothetical daemon "foobar") to ensure that the daemon cannot be started more than once. This must be implemented in race-free fashion so that the PID file is only updated when it is verified at the same time that the PID previously stored in the PID file no longer exists or belongs to a foreign process.
  13. In the daemon process, drop privileges, if possible and applicable.
  14. From the daemon process, notify the original process started that initialization is complete. This can be implemented via an unnamed pipe or similar communication channel that is created before the first fork() and hence available in both the original and the daemon process.
  15. Call exit() in the original process. The process that invoked the daemon must be able to rely on that this exit() happens after initialization is complete and all external communication channels are established and accessible.

Note this warning:

The BSD daemon() function should not be used, as it implements only a subset of these steps.

A daemon that needs to provide compatibility with SysV systems should implement the scheme pointed out above. However, it is recommended to make this behavior optional and configurable via a command line argument to ease debugging as well as to simplify integration into systems using systemd.

Note that daemon() is not POSIX compliant.


New-Style Daemons

For new-style daemons the following steps are recommended:

  1. If SIGTERM is received, shut down the daemon and exit cleanly.
  2. If SIGHUP is received, reload the configuration files, if this applies.
  3. Provide a correct exit code from the main daemon process, as this is used by the init system to detect service errors and problems. It is recommended to follow the exit code scheme as defined in the LSB recommendations for SysV init scripts.
  4. If possible and applicable, expose the daemon's control interface via the D-Bus IPC system and grab a bus name as last step of initialization.
  5. For integration in systemd, provide a .service unit file that carries information about starting, stopping and otherwise maintaining the daemon. See systemd.service(5) for details.
  6. As much as possible, rely on the init system's functionality to limit the access of the daemon to files, services and other resources, i.e. in the case of systemd, rely on systemd's resource limit control instead of implementing your own, rely on systemd's privilege dropping code instead of implementing it in the daemon, and similar. See systemd.exec(5) for the available controls.
  7. If D-Bus is used, make your daemon bus-activatable by supplying a D-Bus service activation configuration file. This has multiple advantages: your daemon may be started lazily on-demand; it may be started in parallel to other daemons requiring it — which maximizes parallelization and boot-up speed; your daemon can be restarted on failure without losing any bus requests, as the bus queues requests for activatable services. See below for details.
  8. If your daemon provides services to other local processes or remote clients via a socket, it should be made socket-activatable following the scheme pointed out below. Like D-Bus activation, this enables on-demand starting of services as well as it allows improved parallelization of service start-up. Also, for state-less protocols (such as syslog, DNS), a daemon implementing socket-based activation can be restarted without losing a single request. See below for details.
  9. If applicable, a daemon should notify the init system about startup completion or status updates via the sd_notify(3) interface.
  10. Instead of using the syslog() call to log directly to the system syslog service, a new-style daemon may choose to simply log to standard error via fprintf(), which is then forwarded to syslog by the init system. If log levels are necessary, these can be encoded by prefixing individual log lines with strings like "<4>" (for log level 4 "WARNING" in the syslog priority scheme), following a similar style as the Linux kernel's printk() level system. For details, see sd-daemon(3) and systemd.exec(5).

To learn more read whole man 7 daemon.

Pileup answered 7/8, 2016 at 20:30 Comment(0)
A
11

You cannot create a process in linux that cannot be killed. The root user (uid=0) can send a signal to a process, and there are two signals which cannot be caught, SIGKILL=9, SIGSTOP=19. And other signals (when uncaught) can also result in process termination.

You may want a more general daemonize function, where you can specify a name for your program/daemon, and a path to run your program (perhaps "/" or "/tmp"). You may also want to provide file(s) for stderr and stdout (and possibly a control path using stdin).

Here are the necessary includes:

#include <stdio.h>    //printf(3)
#include <stdlib.h>   //exit(3)
#include <unistd.h>   //fork(3), chdir(3), sysconf(3)
#include <signal.h>   //signal(3)
#include <sys/stat.h> //umask(3)
#include <syslog.h>   //syslog(3), openlog(3), closelog(3)

And here is a more general function,

int
daemonize(char* name, char* path, char* outfile, char* errfile, char* infile )
{
    if(!path) { path="/"; }
    if(!name) { name="medaemon"; }
    if(!infile) { infile="/dev/null"; }
    if(!outfile) { outfile="/dev/null"; }
    if(!errfile) { errfile="/dev/null"; }
    //printf("%s %s %s %s\n",name,path,outfile,infile);
    pid_t child;
    //fork, detach from process group leader
    if( (child=fork())<0 ) { //failed fork
        fprintf(stderr,"error: failed fork\n");
        exit(EXIT_FAILURE);
    }
    if (child>0) { //parent
        exit(EXIT_SUCCESS);
    }
    if( setsid()<0 ) { //failed to become session leader
        fprintf(stderr,"error: failed setsid\n");
        exit(EXIT_FAILURE);
    }

    //catch/ignore signals
    signal(SIGCHLD,SIG_IGN);
    signal(SIGHUP,SIG_IGN);

    //fork second time
    if ( (child=fork())<0) { //failed fork
        fprintf(stderr,"error: failed fork\n");
        exit(EXIT_FAILURE);
    }
    if( child>0 ) { //parent
        exit(EXIT_SUCCESS);
    }

    //new file permissions
    umask(0);
    //change to path directory
    chdir(path);

    //Close all open file descriptors
    int fd;
    for( fd=sysconf(_SC_OPEN_MAX); fd>0; --fd )
    {
        close(fd);
    }

    //reopen stdin, stdout, stderr
    stdin=fopen(infile,"r");   //fd=0
    stdout=fopen(outfile,"w+");  //fd=1
    stderr=fopen(errfile,"w+");  //fd=2

    //open syslog
    openlog(name,LOG_PID,LOG_DAEMON);
    return(0);
}

Here is a sample program, which becomes a daemon, hangs around, and then leaves.

int
main()
{
    int res;
    int ttl=120;
    int delay=5;
    if( (res=daemonize("mydaemon","/tmp",NULL,NULL,NULL)) != 0 ) {
        fprintf(stderr,"error: daemonize failed\n");
        exit(EXIT_FAILURE);
    }
    while( ttl>0 ) {
        //daemon code here
        syslog(LOG_NOTICE,"daemon ttl %d",ttl);
        sleep(delay);
        ttl-=delay;
    }
    syslog(LOG_NOTICE,"daemon ttl expired");
    closelog();
    return(EXIT_SUCCESS);
}

Note that SIG_IGN indicates to catch and ignore the signal. You could build a signal handler that can log signal receipt, and set flags (such as a flag to indicate graceful shutdown).

Antitank answered 28/1, 2014 at 23:36 Comment(1)
This is functionally identical to the code in the accepted answer by Pascal Werkl two answers up from here, with the exception that your code passes in chars for the chdir and devices to open stdin, etc, and then you open stdin, stdout, stderr. However, you also do one other subtle thing that Pascal Werkl doesn't -- he closes all file descriptors from _SC_OPEN_MAX down to and including fd0, while you close (_SC_OPEN_MAX-1) down to fd1, leaving open _SC_OPEN_MAX (fd1024) and fd0. Why is that?Phosgenite
E
9

Try using the daemon function:

#include <unistd.h>

int daemon(int nochdir, int noclose);

From the man page:

The daemon() function is for programs wishing to detach themselves from the controlling terminal and run in the background as system daemons.

If nochdir is zero, daemon() changes the calling process's current working directory to the root directory ("/"); otherwise, the current working directory is left unchanged.

If noclose is zero, daemon() redirects standard input, standard output and standard error to /dev/null; otherwise, no changes are made to these file descriptors.

Eous answered 12/3, 2015 at 3:49 Comment(2)
Note that daemon(7) manual mentions steps to create daemon and warns that: The BSD daemon() function should not be used, as it implements only a subset of these steps. daemon function first appeared in 4.4BSD and is not POSIX-compliant.Pileup
Note also that the warning about using daemon() is in the old-style SysV section of daemon(7) man page. The use of daemon() is not discouraged for systemd.Brenn
I
6

I can stop at the first requirement "A daemon which cannot be stopped ..."

Not possible my friend; however, you can achieve the same with a much better tool, a kernel module.

http://www.infoq.com/articles/inotify-linux-file-system-event-monitoring

All daemons can be stopped. Some are more easily stopped than others. Even a daemon pair with the partner in hold down, respawning the partner if lost, can be stopped. You just have to work a little harder at it.

Irony answered 30/7, 2013 at 19:20 Comment(1)
I think by saying "A daemon which cannot be stopped", the author actually means that the daemon is always running background when the session is terminated.Weinman
C
6

If your app is one of:

{
  ".sh": "bash",
  ".py": "python",
  ".rb": "ruby",
  ".coffee" : "coffee",
  ".php": "php",
  ".pl" : "perl",
  ".js" : "node"
}

and you don't mind a NodeJS dependency then install NodeJS and then:

npm install -g pm2

pm2 start yourapp.yourext --name "fred" # where .yourext is one of the above

pm2 start yourapp.yourext -i 0 --name "fred" # run your app on all cores

pm2 list

To keep all apps running on reboot (and daemonise pm2):

pm2 startup

pm2 save

Now you can:

service pm2 stop|restart|start|status

(also easily allows you to watch for code changes in your app directory and auto restart the app process when a code change happens)

Carmon answered 29/1, 2017 at 3:17 Comment(3)
This has nothing to do with C.Lenticularis
I appreciate there is a C tag. However, OP does not mention a requirement concerning C in the question. The title is creating a demon in linux. This answer satisfies that.Carmon
Oh, you're right. It's tagged C, but the actual requirement is C++ (as evidenced by OP's code and the linked article).Lenticularis
P
4

Daemon Template

I wrote a daemon template following the new-style daemon: link

You can find the entire template code on GitHub: here

Main.cpp

// This function will be called when the daemon receive a SIGHUP signal.
void reload() {
    LOG_INFO("Reload function called.");
}

int main(int argc, char **argv) {
    // The Daemon class is a singleton to avoid be instantiate more than once
    Daemon& daemon = Daemon::instance();
    // Set the reload function to be called in case of receiving a SIGHUP signal
    daemon.setReloadFunction(reload);
    // Daemon main loop
    int count = 0;
    while(daemon.IsRunning()) {
        LOG_DEBUG("Count: ", count++);
        std::this_thread::sleep_for(std::chrono::seconds(1));
    }
    LOG_INFO("The daemon process ended gracefully.");
}

Daemon.hpp

class Daemon {
    public:

    static Daemon& instance() {
        static Daemon instance;
        return instance;
    }

    void setReloadFunction(std::function<void()> func);

    bool IsRunning();

    private:

    std::function<void()> m_reloadFunc;
    bool m_isRunning;
    bool m_reload;

    Daemon();
    Daemon(Daemon const&) = delete;
    void operator=(Daemon const&) = delete;

    void Reload();

    static void signalHandler(int signal);
};

Daemon.cpp

Daemon::Daemon() {
    m_isRunning = true;
    m_reload = false;
    signal(SIGINT, Daemon::signalHandler);
    signal(SIGTERM, Daemon::signalHandler);
    signal(SIGHUP, Daemon::signalHandler);
}

void Daemon::setReloadFunction(std::function<void()> func) {
    m_reloadFunc = func;
}

bool Daemon::IsRunning() {
    if (m_reload) {
        m_reload = false;
        m_reloadFunc();
    }
    return m_isRunning;
}

void Daemon::signalHandler(int signal) {
    LOG_INFO("Interrup signal number [", signal,"] recived.");
    switch(signal) {
        case SIGINT:
        case SIGTERM: {
            Daemon::instance().m_isRunning = false;
            break;
        }
        case SIGHUP: {
            Daemon::instance().m_reload = true;
            break;
        }
    }
}

daemon-template.service

[Unit]
Description=Simple daemon template
After=network.taget

[Service]
Type=simple
ExecStart=/usr/bin/daemon-template --conf_file /etc/daemon-template/daemon-tenplate.conf
ExecReload=/bin/kill -HUP $MAINPID
User=root
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=daemon-template

[Install]
WantedBy=multi-user.target
Pilgarlic answered 31/12, 2019 at 16:38 Comment(0)
J
3

By calling fork() you've created a child process. If the fork is successful (fork returned a non-zero PID) execution will continue from this point from within the child process. In this case we want to gracefully exit the parent process and then continue our work in the child process.

Maybe this will help: http://www.netzmafia.de/skripten/unix/linux-daemon-howto.html

Jacobinism answered 30/7, 2013 at 18:32 Comment(0)
T
2

A daemon is just a process in the background. If you want to start your program when the OS boots, on linux, you add your start command to /etc/rc.d/rc.local (run after all other scripts) or /etc/startup.sh

On windows, you make a service, register the service, and then set it to start automatically at boot in administration -> services panel.

Thrasonical answered 30/7, 2013 at 18:22 Comment(2)
Thanks. So is there no difference between a "daemon" and just a normal Programm? I dont want it to be closed easily.Epsilon
No, a daemon is just a background process. More specifically, you fork from a parent, run the child process and terminate the parent (so that there's no terminal access to the program). that's n ot relaly necessary though to be a "daemon": en.wikipedia.org/wiki/Daemon_(computing)Thrasonical

© 2022 - 2024 — McMap. All rights reserved.