Im trying to build a 3x3 transition matrix with this data
days=['rain', 'rain', 'rain', 'clouds', 'rain', 'sun', 'clouds', 'clouds',
'rain', 'sun', 'rain', 'rain', 'clouds', 'clouds', 'sun', 'sun',
'clouds', 'clouds', 'rain', 'clouds', 'sun', 'rain', 'rain', 'sun',
'sun', 'clouds', 'clouds', 'rain', 'rain', 'sun', 'sun', 'rain',
'rain', 'sun', 'clouds', 'clouds', 'sun', 'sun', 'clouds', 'rain',
'rain', 'rain', 'rain', 'sun', 'sun', 'sun', 'sun', 'clouds', 'sun',
'clouds', 'clouds', 'sun', 'clouds', 'rain', 'sun', 'sun', 'sun',
'clouds', 'sun', 'rain', 'sun', 'sun', 'sun', 'sun', 'clouds',
'rain', 'clouds', 'clouds', 'sun', 'sun', 'sun', 'sun', 'sun', 'sun',
'clouds', 'clouds', 'clouds', 'clouds', 'clouds', 'sun', 'rain',
'rain', 'rain', 'clouds', 'sun', 'clouds', 'clouds', 'clouds', 'rain',
'clouds', 'rain', 'sun', 'sun', 'clouds', 'sun', 'sun', 'sun', 'sun',
'sun', 'sun', 'rain']
Currently, Im doing it with some temp dictionaries and some list that calculates the probability of each weather separately. Its not a pretty solution. Can someone please guide me with a more reasonable solution to this problem?
self.transitionMatrix=np.zeros((3,3))
#the columns are today
sun_total_count = 0
temp_dict={'sun':0, 'clouds':0, 'rain':0}
total_runs = 0
for (x, y), c in Counter(zip(data, data[1:])).items():
#if column 0 is sun
if x is 'sun':
#find the sum of all the numbers in this column
sun_total_count += c
total_runs += 1
if y is 'sun':
temp_dict['sun'] = c
if y is 'clouds':
temp_dict['clouds'] = c
if y is 'rain':
temp_dict['rain'] = c
if total_runs is 3:
self.transitionMatrix[0][0] = temp_dict['sun']/sun_total_count
self.transitionMatrix[1][0] = temp_dict['clouds']/sun_total_count
self.transitionMatrix[2][0] = temp_dict['rain']/sun_total_count
return self.transitionMatrix
for every type of weather I need to calculate the probability for the next day