I am trying to estimate some spatial models in R using the data from a paper on spatial econometric models using cross-section time series data by Franzese & Hays (2007).
I focus on their results given in table 4 (see below).
Using lm
I am able to replicate their results for the OLS, S-OLS, and S-2SLS models.
However, in trying to estimate the S-ML (Spatial Maximum Likelihood) model I run into trouble.
If I use a GLM model there are some minor differences for some of the explanatory variables but there is quite a large margin with regard to the estimated coefficient for the spatial lag (output shown below). I'm not entirely sure about why GLM is not the right estimation method in this case. Using GLS I get results similar to GLM (possibly related).
require(MASS)
m4<-glm(lnlmtue~lnlmtue_1+SpatLag+DENSITY+DEIND+lngdp_pc+UR+TRADE+FDI+LLVOTE+LEFTC+TCDEMC+GOVCON+OLDAGE+factor(cc)+factor(year),family=gaussian,data=fh)
summary(m4)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.199091355 3.924227850 1.835 0.068684 .
lnlmtue_1 0.435487985 0.080844033 5.387 0.000000293 ***
SpatLag -0.437680018 0.101078950 -4.330 0.000028105 ***
DENSITY 0.007633016 0.010268468 0.743 0.458510
DEIND 0.040270153 0.032304496 1.247 0.214618
I tried using the splm
package but this leads to even larger consistencies (output shown below).
Moreover, I'm not able to include fixed effects in the model.
require(splm)
m4a<-spml(lnlmtue~lnlmtue_1+DENSITY+DEIND+lngdp_pc+UR+TRADE+FDI+LLVOTE+LEFTC+ TCDEMC+GOVCON+OLDAGE,data=fh,index=c("cc","year"),listw=mat2listw(wmat),
model="pooling",spatial.error="none",lag=T)
summary(m4a)
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.79439070 0.78042284 2.2993 0.02149 *
lnlmtue_1 0.75795987 0.04828145 15.6988 < 2e-16 ***
DENSITY -0.00026038 0.00203002 -0.1283 0.89794
DEIND -0.00489516 0.01414457 -0.3461 0.72928
So basically my question really is how does one properly estimate a SAR model with cross-section time-series data in R
?
spdep
package (more generally see the Spatial task view) – Trumainespdep
doesn't handle time-series cross-section data. – Extracellular