I'm am trying to call the to_dict function on the following DataFrame:
import pandas as pd
data = {"a": [1,2,3,4,5], "b": [90,80,40,60,30]}
df = pd.DataFrame(data)
a b
0 1 90
1 2 80
2 3 40
3 4 60
4 5 30
df.reset_index().to_dict("r")
[{'a': 1, 'b': 90, 'index': 0},
{'a': 2, 'b': 80, 'index': 1},
{'a': 3, 'b': 40, 'index': 2},
{'a': 4, 'b': 60, 'index': 3},
{'a': 5, 'b': 30, 'index': 4}]
However my problem occurs if I perform a float operation on the dataframe, which mutates the index into a float:
(df*1.0).reset_index().to_dict("r")
[{'a': 1.0, 'b': 90.0, 'index': 0.0},
{'a': 2.0, 'b': 80.0, 'index': 1.0},
{'a': 3.0, 'b': 40.0, 'index': 2.0},
{'a': 4.0, 'b': 60.0, 'index': 3.0},
{'a': 5.0, 'b': 30.0, 'index': 4.0}]
Can anyone explain the above behaviour or recommend a workaround, or verify whether or not this could be a pandas bug? None of the other outtypes in the to_dict method mutates the index as shown above.
I've replicated this on both pandas 0.14 and 0.18 (latest)
Many thanks!