Is it possible to add attributes at runtime or to change the value of an attribute at runtime?
Attributes are static metadata. Assemblies, modules, types, members, parameters, and return values aren't first-class objects in C# (e.g., the System.Type
class is merely a reflected representation of a type). You can get an instance of an attribute for a type and change the properties if they're writable but that won't affect the attribute as it is applied to the type.
This really depends on what exactly you're trying to accomplish.
The System.ComponentModel.TypeDescriptor stuff can be used to add attributes to types, properties and object instances, and it has the limitation that you have to use it to retrieve those properties as well. If you're writing the code that consumes those attributes, and you can live within those limitations, then I'd definitely suggest it.
As far as I know, the PropertyGrid control and the visual studio design surface are the only things in the BCL that consume the TypeDescriptor stuff. In fact, that's how they do about half the things they really need to do.
TypeDescriptor
and TypeDescriptionProvider
aren't implemented? –
Hardset [Attr(1), Attr(2), Attr(3)]
only Attr(3)
is found. –
Aorta Attributes are static metadata. Assemblies, modules, types, members, parameters, and return values aren't first-class objects in C# (e.g., the System.Type
class is merely a reflected representation of a type). You can get an instance of an attribute for a type and change the properties if they're writable but that won't affect the attribute as it is applied to the type.
You can't. One workaround might be to generate a derived class at runtime and adding the attribute, although this is probably bit of an overkill.
Well, just to be different, I found an article that references using Reflection.Emit to do so.
Here's the link: http://www.codeproject.com/KB/cs/dotnetattributes.aspx , you will also want to look into some of the comments at the bottom of the article, because possible approaches are discussed.
YourClass
into YourRuntimeClassWithAttributes
. –
Laureate YourClass
, you could subclass it at runtime and generate an identical class with a slightly different name that also has the desired dynamically created attributes, and polymorphism will allow type checking code to still identify your baseclass. –
Laureate No, it's not.
Attributes are meta-data and stored in binary-form in the compiled assembly (that's also why you can only use simple types in them).
I don't believe so. Even if I'm wrong, the best you can hope for is adding them to an entire Type, never an instance of a Type.
If you need something to be able to added dynamically, c# attributes aren't the way. Look into storing the data in xml. I recently did a project that i started w/ attributes, but eventually moved to serialization w/ xml.
Why do you need to? Attributes give extra information for reflection, but if you externally know which properties you want you don't need them.
You could store meta data externally relatively easily in a database or resource file.
Like mentionned in a comment below by Deczaloth, I think that metadata is fixed at compile time. I achieve it by creating a dynamic object where I override GetType() or use GetCustomType() and writing my own type. Using this then you could...
I tried very hard with System.ComponentModel.TypeDescriptor without success. That does not means it can't work but I would like to see code for that.
In counter part, I wanted to change some Attribute values. I did 2 functions which work fine for that purpose.
// ************************************************************************
public static void SetObjectPropertyDescription(this Type typeOfObject, string propertyName, string description)
{
PropertyDescriptor pd = TypeDescriptor.GetProperties(typeOfObject)[propertyName];
var att = pd.Attributes[typeof(DescriptionAttribute)] as DescriptionAttribute;
if (att != null)
{
var fieldDescription = att.GetType().GetField("description", BindingFlags.NonPublic | BindingFlags.Instance);
if (fieldDescription != null)
{
fieldDescription.SetValue(att, description);
}
}
}
// ************************************************************************
public static void SetPropertyAttributReadOnly(this Type typeOfObject, string propertyName, bool isReadOnly)
{
PropertyDescriptor pd = TypeDescriptor.GetProperties(typeOfObject)[propertyName];
var att = pd.Attributes[typeof(ReadOnlyAttribute)] as ReadOnlyAttribute;
if (att != null)
{
var fieldDescription = att.GetType().GetField("isReadOnly", BindingFlags.NonPublic | BindingFlags.Instance);
if (fieldDescription != null)
{
fieldDescription.SetValue(att, isReadOnly);
}
}
}
When faced with this situation, yet another solution might be questioning you code design and search for a more object-oriented way. For me, struggling with unpleasant reflection work arounds is the last resort. And my first reaction to this situation would be re-designing the code. Think of the following code, which tries to solve the problem that you have to add an attribute to a third-party class you are using.
class Employee {} // This one is third-party.
And you have code like
var specialEmployee = new Employee();
// Here you need an employee with a special behaviour and
// want to add an attribute to the employee but you cannot.
The solution might be extracting a class inheriting from the Employee
class and decorating it with your attribute:
[SpecialAttribute]
class SpecialEmployee : Employee
{
}
When you create an instance of this new class
var specialEmployee = new SpecialEmployee();
you can distinguish this specialEmployee
object from other employee
objects. If appropriate, you may want to make this SpecialEmployee
a private nested class.
© 2022 - 2024 — McMap. All rights reserved.
TypeDescriptor
- not justPropertyGrid
. – Envy