Note: Updated on 06/17/2015. Of course this is possible. See the solution below.
Even if anyone copies and pastes this code, you still have a lot of cleanup to do. Also note that you will have problems inside the critical strip from Re(s) = 0 to Re(s) = 1 :). But this is a good start.
import java.util.Scanner;
public class NewTest{
public static void main(String[] args) {
RiemannZetaMain func = new RiemannZetaMain();
double s = 0;
double start, stop, totalTime;
Scanner scan = new Scanner(System.in);
System.out.print("Enter the value of s inside the Riemann Zeta Function: ");
try {
s = scan.nextDouble();
}
catch (Exception e) {
System.out.println("You must enter a positive integer greater than 1.");
}
start = System.currentTimeMillis();
if (s <= 0)
System.out.println("Value for the Zeta Function = " + riemannFuncForm(s));
else if (s == 1)
System.out.println("The zeta funxtion is undefined for Re(s) = 1.");
else if(s >= 2)
System.out.println("Value for the Zeta Function = " + getStandardSum(s));
else
System.out.println("Value for the Zeta Function = " + getNewSum(s));
stop = System.currentTimeMillis();
totalTime = (double) (stop-start) / 1000.0;
System.out.println("Total time taken is " + totalTime + " seconds.");
}
// Standard form the the Zeta function.
public static double standardZeta(double s) {
int n = 1;
double currentSum = 0;
double relativeError = 1;
double error = 0.000001;
double remainder;
while (relativeError > error) {
currentSum = Math.pow(n, -s) + currentSum;
remainder = 1 / ((s-1)* Math.pow(n, (s-1)));
relativeError = remainder / currentSum;
n++;
}
System.out.println("The number of terms summed was " + n + ".");
return currentSum;
}
public static double getStandardSum(double s){
return standardZeta(s);
}
//New Form
// zeta(s) = 2^(-1+2 s)/((-2+2^s) Gamma(1+s)) integral_0^infinity t^s sech^2(t) dt for Re(s)>-1
public static double Integrate(double start, double end) {
double currentIntegralValue = 0;
double dx = 0.0001d; // The size of delta x in the approximation
double x = start; // A = starting point of integration, B = ending point of integration.
// Ending conditions for the while loop
// Condition #1: The value of b - x(i) is less than delta(x).
// This would throw an out of bounds exception.
// Condition #2: The value of b - x(i) is greater than 0 (Since you start at A and split the integral
// up into "infinitesimally small" chunks up until you reach delta(x)*n.
while (Math.abs(end - x) >= dx && (end - x) > 0) {
currentIntegralValue += function(x) * dx; // Use the (Riemann) rectangle sums at xi to compute width * height
x += dx; // Add these sums together
}
return currentIntegralValue;
}
private static double function(double s) {
double sech = 1 / Math.cosh(s); // Hyperbolic cosecant
double squared = Math.pow(sech, 2);
return ((Math.pow(s, 0.5)) * squared);
}
public static double getNewSum(double s){
double constant = Math.pow(2, (2*s)-1) / (((Math.pow(2, s)) -2)*(gamma(1+s)));
return constant*Integrate(0, 1000);
}
// Gamma Function - Lanczos approximation
public static double gamma(double s){
double[] p = {0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7};
int g = 7;
if(s < 0.5) return Math.PI / (Math.sin(Math.PI * s)*gamma(1-s));
s -= 1;
double a = p[0];
double t = s+g+0.5;
for(int i = 1; i < p.length; i++){
a += p[i]/(s+i);
}
return Math.sqrt(2*Math.PI)*Math.pow(t, s+0.5)*Math.exp(-t)*a;
}
//Binomial Co-efficient - NOT CURRENTLY USING
/*
public static double binomial(int n, int k)
{
if (k>n-k)
k=n-k;
long b=1;
for (int i=1, m=n; i<=k; i++, m--)
b=b*m/i;
return b;
} */
// Riemann's Functional Equation
// Tried this initially and utterly failed.
public static double riemannFuncForm(double s) {
double term = Math.pow(2, s)*Math.pow(Math.PI, s-1)*(Math.sin((Math.PI*s)/2))*gamma(1-s);
double nextTerm = Math.pow(2, (1-s))*Math.pow(Math.PI, (1-s)-1)*(Math.sin((Math.PI*(1-s))/2))*gamma(1-(1-s));
double error = Math.abs(term - nextTerm);
if(s == 1.0)
return 0;
else
return Math.pow(2, s)*Math.pow(Math.PI, s-1)*(Math.sin((Math.PI*s)/2))*gamma(1-s)*standardZeta(1-s);
}
}