Background: I am working on a problem similar to the nonlinear logistic regression described in the link [1] (my problem is more complicated, but link [1] is enough for the next sections of this post). Comparing my results with those obtained in parallel with a R package, I got similar results for the coefficients, but (very approximately) an opposite logLikelihood.
Hypothesis: The logLikelihood given by fitnlm in Matlab is in fact the negative LogLikelihood. (Note that this impairs consequently the BIC and AIC computation by Matlab)
Reasonning: in [1], the same problem is solved through two different approaches. ML-approach/ By defining the negative LogLikelihood and making an optimization with fminsearch. GLS-approach/ By using fitnlm.
The negative LogLikelihood after the ML-approach is:380
The negative LogLikelihood after the GLS-approach is:-406
I imagine the second one should be at least multiplied by (-1)?
Questions: Did I miss something? Is the (-1) coefficient enough, or would this simple correction not be enough?
Self-contained code:
%copy-pasting code from [1]
myf = @(beta,x) beta(1)*x./(beta(2) + x);
mymodelfun = @(beta,x) 1./(1 + exp(-myf(beta,x)));
rng(300,'twister');
x = linspace(-1,1,200)';
beta = [10;2];
beta0=[3;3];
mu = mymodelfun(beta,x);
n = 50;
z = binornd(n,mu);
y = z./n;
%ML Approach
mynegloglik = @(beta) -sum(log(binopdf(z,n,mymodelfun(beta,x))));
opts = optimset('fminsearch');
opts.MaxFunEvals = Inf;
opts.MaxIter = 10000;
betaHatML = fminsearch(mynegloglik,beta0,opts)
neglogLH_MLApproach = mynegloglik(betaHatML);
%GLS Approach
wfun = @(xx) n./(xx.*(1-xx));
nlm = fitnlm(x,y,mymodelfun,beta0,'Weights',wfun)
neglogLH_GLSApproach = - nlm.LogLikelihood;
Source:
[1] https://uk.mathworks.com/help/stats/examples/nonlinear-logistic-regression.html