I'm using the below python script for getting predictions from google speech API from live streaming audio input.
The issue is, I need predictions from google speech API for each utterance and then also save the audio for each utterance spoken to disk.
I'm not sure, how I can modify the script to save the live audio for each utterance and also print results for each utterance rather than continuous prediction.
#!/usr/bin/env python
import os
import re
import sys
import time
from google.cloud import speech
import pyaudio
from six.moves import queue
# Audio recording parameters
STREAMING_LIMIT = 240000 # 4 minutes
SAMPLE_RATE = 16000
CHUNK_SIZE = int(SAMPLE_RATE / 10) # 100ms
api_key = r'path_to_json_file\google.json'
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = api_key
RED = '\033[0;31m'
GREEN = '\033[0;32m'
YELLOW = '\033[0;33m'
def get_current_time():
"""Return Current Time in MS."""
return int(round(time.time() * 1000))
class ResumableMicrophoneStream:
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, rate, chunk_size):
self._rate = rate
self.chunk_size = chunk_size
self._num_channels = 1
self._buff = queue.Queue()
self.closed = True
self.start_time = get_current_time()
self.restart_counter = 0
self.audio_input = []
self.last_audio_input = []
self.result_end_time = 0
self.is_final_end_time = 0
self.final_request_end_time = 0
self.bridging_offset = 0
self.last_transcript_was_final = False
self.new_stream = True
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
channels=self._num_channels,
rate=self._rate,
input=True,
frames_per_buffer=self.chunk_size,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
def __enter__(self):
self.closed = False
return self
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, *args, **kwargs):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def generator(self):
"""Stream Audio from microphone to API and to local buffer"""
while not self.closed:
data = []
if self.new_stream and self.last_audio_input:
chunk_time = STREAMING_LIMIT / len(self.last_audio_input)
if chunk_time != 0:
if self.bridging_offset < 0:
self.bridging_offset = 0
if self.bridging_offset > self.final_request_end_time:
self.bridging_offset = self.final_request_end_time
chunks_from_ms = round((self.final_request_end_time -
self.bridging_offset) / chunk_time)
self.bridging_offset = (round((
len(self.last_audio_input) - chunks_from_ms)
* chunk_time))
for i in range(chunks_from_ms, len(self.last_audio_input)):
data.append(self.last_audio_input[i])
self.new_stream = False
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
self.audio_input.append(chunk)
if chunk is None:
return
data.append(chunk)
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
self.audio_input.append(chunk)
except queue.Empty:
break
yield b''.join(data)
def listen_print_loop(responses, stream):
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
Each response may contain multiple results, and each result may contain
multiple alternatives; Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
"""
for response in responses:
if get_current_time() - stream.start_time > STREAMING_LIMIT:
stream.start_time = get_current_time()
break
if not response.results:
continue
result = response.results[0]
if not result.alternatives:
continue
transcript = result.alternatives[0].transcript
result_seconds = 0
result_nanos = 0
if result.result_end_time.seconds:
result_seconds = result.result_end_time.seconds
if result.result_end_time.nanos:
result_nanos = result.result_end_time.nanos
stream.result_end_time = int((result_seconds * 1000)
+ (result_nanos / 1000000))
corrected_time = (stream.result_end_time - stream.bridging_offset
+ (STREAMING_LIMIT * stream.restart_counter))
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
if result.is_final:
sys.stdout.write(GREEN)
sys.stdout.write('\033[K')
sys.stdout.write(str(corrected_time) + ': ' + transcript + '\n')
stream.is_final_end_time = stream.result_end_time
stream.last_transcript_was_final = True
# Exit recognition if any of the transcribed phrases could be
# one of our keywords.
if re.search(r'\b(exit|quit)\b', transcript, re.I):
sys.stdout.write(YELLOW)
sys.stdout.write('Exiting...\n')
stream.closed = True
break
else:
sys.stdout.write(RED)
sys.stdout.write('\033[K')
sys.stdout.write(str(corrected_time) + ': ' + transcript + '\r')
stream.last_transcript_was_final = False
def main():
"""start bidirectional streaming from microphone input to speech API"""
client = speech.SpeechClient()
config = speech.types.RecognitionConfig(
encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=SAMPLE_RATE,
language_code='en-US',
max_alternatives=1)
streaming_config = speech.types.StreamingRecognitionConfig(
config=config,
interim_results=True)
mic_manager = ResumableMicrophoneStream(SAMPLE_RATE, CHUNK_SIZE)
print(mic_manager.chunk_size)
sys.stdout.write(YELLOW)
sys.stdout.write('\nListening, say "Quit" or "Exit" to stop.\n\n')
sys.stdout.write('End (ms) Transcript Results/Status\n')
sys.stdout.write('=====================================================\n')
with mic_manager as stream:
while not stream.closed:
sys.stdout.write(YELLOW)
sys.stdout.write('\n' + str(
STREAMING_LIMIT * stream.restart_counter) + ': NEW REQUEST\n')
stream.audio_input = []
audio_generator = stream.generator()
requests = (speech.types.StreamingRecognizeRequest(
audio_content=content)for content in audio_generator)
responses = client.streaming_recognize(streaming_config,
requests)
# Now, put the transcription responses to use.
listen_print_loop(responses, stream)
if stream.result_end_time > 0:
stream.final_request_end_time = stream.is_final_end_time
stream.result_end_time = 0
stream.last_audio_input = []
stream.last_audio_input = stream.audio_input
stream.audio_input = []
stream.restart_counter = stream.restart_counter + 1
if not stream.last_transcript_was_final:
sys.stdout.write('\n')
stream.new_stream = True
if __name__ == '__main__':
main()