I would like to interface an garbage collected language (specifically, it's using the venerable Boehm libgc) to the glib family of APIs.
glib and gobject use reference counting internally to manage object lifetime. The normal way to wrap these is to use a garbage collected peer object which holds a reference to the glib object, and which drops the reference when the peer gets finalised; this means that the glib object is kept alive while the application is using the peer. I've done this before, and it works, but it's pretty painful and has its own problems (such as producing two peers of the same underlying object).
Given that I've got all the overhead of a garbage collector anyway, ideally what I'd like to do is to simply turn off glib's reference counting and use the garbage collector for everything. This would simplify the interface no end and hopefully improve performance.
On the face of things this would seem fairly simple --- hook up a garbage collector finaliser to the glib object finaliser, and override the ref and unref functions to be noops --- but further investigation shows there's more to it than that: glib is very fond of keeping its own allocator pools, for example, and of course I let it do that the garbage collector assume that everything in the pool is live and it'll leak.
Is persuading glib to use libgc actually feasible? If so, what other gotchas am I likely to face? What sort of glib performance impact would forcing all allocations to go through libgc produce (as opposed to using the optimised allocators currently in glib)?
(The glib docs do say that it's supposed to interface cleanly to a garbage collector...)