I have a Fortran DLL which is called from a C program, and one of my procedures needs periodically to call a callback function which is supplied by the C program. I currently have it working well in its 'simple' form, but I'd like to be able to store my callback pointer inside a derived type, so that it can be passed around within my Fortran code more easily. So far, nothing I've tried seems to work.
To begin with, here is what I have at the moment, and this does work:
Starting in the C (OK, actually C++) program, the header prototype for the callback is:
typedef void (*fcb)(void *)
and the prototype for the Fortran call is:
extern "C" __declspec(dllexport) int fortran_function(int n,
uchar *image_buffer,
fcb callback,
void *object);
The actual callback function is:
void callback(void* pObject)
{
// Cast the void pointer back to the appropriate class type:
MyClass *pMyObject = static_cast<MyClass *>(pObject);
pMyObject -> updateImageInGUI();
}
and the call to the Fortran code from C++ is:
int error = fortran_function(m_image.size(), m_image.data, callback, this);
where m_image
is an array of image data which is a member attribute of the current object. What happens is that the C++ passes the raw image data to the Fortran DLL and asks the Fortran to process it, and since this takes a long time the Fortran periodically updates the image buffer and calls the callback to refresh the GUI. Anyway, moving on to the Fortran side, we define an interface for the C callback:
abstract interface
subroutine c_callback(c_object) bind(c)
use, intrinsic :: iso_c_binding
type(c_ptr), intent(in) :: c_object
end subroutine c_callback
end interface
and define our main Fortran routine thus:
integer(c_int) fortran_function(n, image, callback, c_object) &
bind(c, name='fortran_function')
integer(c_int), value :: n
integer(4), intent(inout), dimension(n) :: image
procedure(c_callback) :: callback
type(c_ptr), intent(in) :: c_object
Somewhere in the main routine we call our subroutine, foo
:
call foo(data, callback, c_object)
...where foo
is defined as:
subroutine foo(data, callback, c_object)
type(my_type), intent(inout) :: data
procedure(c_callback) :: callback
type(c_ptr), intent(in) :: c_object
...
call callback(c_object)
...
end function foo
As I said, all of this works well and has done so for a long time.
Now for the things I've tried but which don't work:
The naive approach, just copying the arguments into the fields of a structure
I'd expect this to work, since all all I'm doing is to copy the original elements into a structure with no modification. Nothing changes on the C side, nor in the definition of the main Fortran function nor the abstract interface to c_callback
. All I do is to create a new Fortran derived type:
type :: callback_data
procedure(c_callback), pointer, nopass :: callback => null()
type(c_ptr) :: c_object
end type callback_data
and then in my main function I populate this with the values received from the C application:
data%callback_data%callback => callback
data%callback_data%c_object = c_object
call foo(data)
The subroutine foo has been slightly modified so that it now looks for the callback and C object within the structure:
subroutine foo(data)
type(my_augmented_type), intent(inout) :: data
...
call data%callback_data%callback(data%callback_data%c_object)
...
end function foo
This fails at the call with an "access violation reading location 0xffffffffffffffff".
The sophisticated approach using more of the iso_c_binding features
Again nothing changes on the C side but I modify the Fortran side of the main function to receive the callback as a c_funptr
:
integer(c_int) fortran_function(n, image, callback, c_object) &
bind(c, name='fortran_function')
integer(c_int), value :: n
integer(4), intent(inout), dimension(n) :: image
type(c_funptr), intent(in) :: callback
type(c_ptr), intent(in) :: c_object
I define the abstract interface to subroutine c_callback
just as before, though I've experimented both with leaving the bind(c)
part of it in, and omitting it. The code within the main function that calls the subroutine foo
is now:
call c_f_procpointer(callback, data%callback_data%callback)
data%callback_data%c_object = c_object
call foo(data)
...with the subroutine foo itself still defined as in the previous example.
Unfortunately this fails in exactly the same way as the previous example.
I assume that there is a correct syntax to achieve what I'm trying to achieve here, and I'd be very grateful for any advice.