I have a 3 million x 9 million sparse matrix with several billion non-zero entries. R and Python do not allow sparse matrices with more than MAXINT non-zero entries, thus why I found myself using Julia.
While scaling this data with the standard deviation is trivial, demeaning is of course a no-go in a naive manner as that would create a dense, 200+ terabyte matrix.
The relevant code for doing svd is julia can be found at https://github.com/JuliaLang/julia/blob/343b7f56fcc84b20cd1a9566fd548130bb883505/base/linalg/arnoldi.jl#L398
From my reading, a key element of this code is the AtA_or_AAt struct and several of the functions around those, specifically A_mul_B!. Copied below for your convenience
struct AtA_or_AAt{T,S} <: AbstractArray{T, 2}
A::S
buffer::Vector{T}
end
function AtA_or_AAt(A::AbstractMatrix{T}) where T
Tnew = typeof(zero(T)/sqrt(one(T)))
Anew = convert(AbstractMatrix{Tnew}, A)
AtA_or_AAt{Tnew,typeof(Anew)}(Anew, Vector{Tnew}(max(size(A)...)))
end
function A_mul_B!(y::StridedVector{T}, A::AtA_or_AAt{T}, x::StridedVector{T}) where T
if size(A.A, 1) >= size(A.A, 2)
A_mul_B!(A.buffer, A.A, x)
return Ac_mul_B!(y, A.A, A.buffer)
else
Ac_mul_B!(A.buffer, A.A, x)
return A_mul_B!(y, A.A, A.buffer)
end
end
size(A::AtA_or_AAt) = ntuple(i -> min(size(A.A)...), Val(2))
ishermitian(s::AtA_or_AAt) = true
This is passed into the eigs function, where some magic happens, and the output is then processed in to the relevant components for SVD.
I think the best way to make this work for a 'centering on the fly' type setup is to do something like subclass AtA_or_AAT with a AtA_or_AAT_centered version that more or less mimics the behavior but also stores the column means, and redefines the A_mul_B! function appropriately.
However, I do not use Julia very much and have run in to some difficulty modifying things already. Before I try to dive into this again, I was wondering if I could get feedback if this would be considered an appropriate plan of attack, or if there is simply a much easier way of doing SVD on such a large matrix (I haven't seen it, but I may have missed something).
edit: Instead of modifying base Julia, I've tried writing a "Centered Sparse Matrix" package that keeps the sparsity structure of the input sparse matrix, but enters the column means where appropriate in various computations. It's limited in what it has implemented, and it works. Unfortunately, it is still too slow, despite some pretty extensive efforts to try to optimize things.