I would like to pre-train a model and then train it with another model.
I have model Decision Tree Classifer
and then I would like to train it further with model LGBM Classifier
. Is there a possibility to do this in scikit learn?
I have already read this post about it https://datascience.stackexchange.com/questions/28512/train-new-data-to-pre-trained-model.. In the post it says
As per the official documentation, calling fit() more than once will overwrite what was learned by any previous fit()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# Train Decision Tree Classifer
clf = DecisionTreeClassifier()
clf = clf.fit(X_train,y_train)
lgbm = lgb.LGBMClassifier()
lgbm = lgbm.fit(X_train,y_train)
#Predict the response for test dataset
y_pred = lgbm.predict(X_test)