I'm writing a C++/CX component to be consumed by Window's store Apps. I'm looking for a way to accomplish what Task.Delay(1000) does in C#.
Old Question, but still unanswered.
You can use
#include <chrono>
#include <thread>
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
This will need C++11, which shouldn't be a problem when using C++/CX.
After one year of using C++/CX, I have a general and reasonably correct answer to this question.
This link (from the Visual C++ Parallel Patterns Library documentation) includes a snippet for a function called complete_after(). That function creates a task that will complete after the specified number of milliseconds. You can then define a continuation task that will execute afterwards:
void MyFunction()
{
// ... Do a first thing ...
concurrency::create_task(complete_after(1000), concurrency::task_continuation_context::use_current)
.then([]() {
// Do the next thing, on the same thread.
});
}
Or better yet, if you use Visual C++'s coroutines capabilities simply type:
concurrency::task<void> MyFunctionAsync()
{
// ... Do a first thing ...
co_await complete_after(1000);
// Do the next thing.
// Warning: if not on the UI thread (e.g., on a threadpool thread), this may resume on a different thread.
}
concurrency::task<void>
:/ Ooh, concurrency::wait(ms)
looks promising :) –
Aarika You could create a concurrency::task, wait for 1000 time units and then call the ".then" method for the task. This will ensure that there is at least a wait of 1000 time units between the time you created the task and between the time it gets executed.
I'm not going to claim to be a wizard - I'm still fairly new to UWP and C++/CX., but what I'm using is the following:
public ref class MyClass sealed {
public:
MyClass()
{
m_timer = ref new Windows::UI::Xaml::DispatcherTimer;
m_timer->Tick += ref new Windows::Foundation::EventHandler<Platform::Object^>(this, &MyClass::PostDelay);
}
void StartDelay()
{
m_timer->Interval.Duration = 200 * 10000;// 200ms expressed in 100s of nanoseconds
m_timer->Start();
}
void PostDelay(Platform::Object^ sender, Platform::Object ^args)
{
m_timer->Stop();
// Do some stuff after the delay
}
private:
Windows::UI::Xaml::DispatcherTimer ^m_timer;
}
The main advantage over other approaches is that:
- it's non-blocking
- You're guaranteed to be called back on the XAML UI thread
© 2022 - 2024 — McMap. All rights reserved.