I found that the accepted answer had some mathematical glitches that in total would require edits beyond the recommended etiquette for modifying posts. So here is a solution to compute the standard error estimate for the coefficients obtained through the linear model (using an unbiased estimate as suggested here):
# preparation
X = np.concatenate((np.ones(TST.shape[0], 1)), TST), axis=1)
y_hat = clf.predict(TST).T
m, n = X.shape
# computation
MSE = np.sum((y_hat - y)**2)/(m - n)
coef_var_est = MSE * np.diag(np.linalg.pinv(np.dot(X.T,X)))
coef_SE_est = np.sqrt(var_est)
Note that we have to add a column of ones to TST
as the original post used the linear_model.LinearRegression
in a way that will fit the intercept term. Furthermore, we need to compute the mean squared error (MSE) as in ANOVA. That is, we need to divide the sum of squared errors (SSE) by the degrees of freedom for the error, i.e., df_error = df_observations - df_features.
The resulting array coef_SE_est
contains the standard error estimates of the intercept and all other coefficients in coef_SE_est[0]
and coef_SE_est[1:]
resp. To print them out you could use
print('intercept: coef={:.4f} / std_err={:.4f}'.format(clf.intercept_[0], coef_SE_est[0]))
for i, coef in enumerate(clf.coef_[0,:]):
print('x{}: coef={:.4f} / std_err={:.4f}'.format(i+1, coef, coef_SE_est[i+1]))