It looks to me, from a very trivial test case, like the JVM round-trips every double
computation through memory to get the rounding it wants. It also seems to do something weird with a couple of magic constants. Here's what it did for me for a simple "compute 2^n naively" program:
0xb1e444b0: fld1
0xb1e444b2: jmp 0xb1e444dd ;*iload
; - fptest::calc@9 (line 6)
0xb1e444b7: nop
0xb1e444b8: fldt 0xb523a2c8 ; {external_word}
0xb1e444be: fmulp %st,%st(1)
0xb1e444c0: fmull 0xb1e44490 ; {section_word}
0xb1e444c6: fldt 0xb523a2bc ; {external_word}
0xb1e444cc: fmulp %st,%st(1)
0xb1e444ce: fstpl 0x10(%esp)
0xb1e444d2: inc %esi ; OopMap{off=51}
;*goto
; - fptest::calc@22 (line 6)
0xb1e444d3: test %eax,0xb3f8d100 ; {poll}
0xb1e444d9: fldl 0x10(%esp) ;*goto
; - fptest::calc@22 (line 6)
0xb1e444dd: cmp %ecx,%esi
0xb1e444df: jl 0xb1e444b8 ;*if_icmpge
; - fptest::calc@12 (line 6)
I believe 0xb523a2c8
and 0xb523a2bc
are _fpu_subnormal_bias1
and _fpu_subnormal_bias2
from the hotspot source code. _fpu_subnormal_bias1
looks to be 0x03ff8000000000000000
and _fpu_subnormal_bias2
looks to be 0x7bff8000000000000000
. _fpu_subnormal_bias1
has the effect of scaling the smallest normal double
to the smallest normal long double
; if the FPU rounds to 53 bits, the "right thing" will happen.
I'd speculate that the seemingly-pointless test
instruction is there so that the thread can be interrupted by marking that page unreadable in the event that a GC is necessary.
Here's the Java code:
import java.io.*;
public strictfp class fptest {
public static double calc(int k) {
double a = 2.0;
double b = 1.0;
for (int i = 0; i < k; i++) {
b *= a;
}
return b;
}
public static double intest() {
double d = 0;
for (int i = 0; i < 4100; i++) d += calc(i);
return d;
}
public static void main(String[] args) throws Exception {
for (int i = 0; i < 100; i++)
System.out.println(intest());
}
}
Digging further, the code for these operations is in plain sight in the OpenJDK code in hotspot/src/cpu/x86/vm/x86_63.ad
. Relevant snippets:
instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()
->method()->is_strict() );
match(Set dst (MulD dst src));
ins_cost(1); // Select this instruction for all strict FP double multiplies
format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t"
"DMULp $dst,ST\n\t"
"FLD $src\n\t"
"DMULp $dst,ST\n\t"
"FLD StubRoutines::_fpu_subnormal_bias2\n\t"
"DMULp $dst,ST\n\t" %}
opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
ins_encode( strictfp_bias1(dst),
Push_Reg_D(src),
OpcP, RegOpc(dst),
strictfp_bias2(dst) );
ins_pipe( fpu_reg_reg );
%}
instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
predicate (UseSSE<=1);
match(Set dst (DivD dst src));
predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()
->method()->is_strict() );
ins_cost(01);
format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t"
"DMULp $dst,ST\n\t"
"FLD $src\n\t"
"FDIVp $dst,ST\n\t"
"FLD StubRoutines::_fpu_subnormal_bias2\n\t"
"DMULp $dst,ST\n\t" %}
opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
ins_encode( strictfp_bias1(dst),
Push_Reg_D(src),
OpcP, RegOpc(dst),
strictfp_bias2(dst) );
ins_pipe( fpu_reg_reg );
%}
I see nothing for addition and subtraction, but I'd bet they just do an add/subtract with the FPU in 53-bit mode and then round-trip the result through memory. I'm a little curious whether there's a tricky overflow case that they get wrong, but I'm not curious enough to find out.
-XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly
to see what code it generates. – Watterson