Because Gunicorn is starting with 8 workers (in your example), this forks the app 8 times into 8 processes. These 8 processes are forked from the Master process, which monitors each of their status & has the ability to add/remove workers.
Each process gets a copy of your APScheduler object, which initially is an exact copy of your Master processes' APScheduler. This results in each "nth" worker (process) executing each job a total of "n" times.
A hack around this is to run gunicorn with the following options:
env/bin/gunicorn module_containing_app:app -b 0.0.0.0:8080 --workers 3 --preload
The --preload
flag tells Gunicorn to "load the app before forking the worker processes". By doing so, each worker is "given a copy of the app, already instantiated by the Master, rather than instantiating the app itself". This means the following code only executes once in the Master process:
rerun_monitor = Scheduler()
rerun_monitor.start()
rerun_monitor.add_interval_job(job_to_be_run,\
seconds=JOB_INTERVAL)
Additionally, we need to set the jobstore to be anything other than :memory:.This way, although each worker is its own independent process unable of communicating with the other 7, by using a local database (rather then memory) we guarantee a single-point-of-truth for CRUD operations on the jobstore.
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
rerun_monitor = Scheduler(
jobstores={'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')})
rerun_monitor.start()
rerun_monitor.add_interval_job(job_to_be_run,\
seconds=JOB_INTERVAL)
Lastly, we want to use the BackgroundScheduler because of its implementation of start()
. When we call start()
in the BackgroundScheduler, a new thread is spun up in the background, which is responsible for scheduling/executing jobs. This is significant because remember in step (1), due to our --preload
flag we only execute the start()
function once, in the Master Gunicorn process. By definition, forked processes do not inherit the threads of their Parent, so each worker doesn't run the BackgroundScheduler thread.
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
rerun_monitor = BackgroundScheduler(
jobstores={'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')})
rerun_monitor.start()
rerun_monitor.add_interval_job(job_to_be_run,\
seconds=JOB_INTERVAL)
As a result of all of this, every Gunicorn worker has an APScheduler that has been tricked into a "STARTED" state, but actually isn't running because it drops the threads of it's parent! Each instance is also capable of updating the jobstore database, just not executing any jobs!
Check out flask-APScheduler for a quick way to run APScheduler in a web-server (like Gunicorn), and enable CRUD operations for each job.
__init__.py
of the application – Haygood