I'm going through Terry Tao's real analysis textbook, which builds up fundamental mathematics from the natural numbers up. By formalizing as many of the proofs as possible, I hope to familiarize myself with both Idris and dependent types.
I have defined the following datatype:
data GE: Nat -> Nat -> Type where
Ge : (n: Nat) -> (m: Nat) -> GE n (n + m)
to represent the proposition that one natural number is greater than or equal to another.
I'm currently struggling to prove reflexivity of this relation, i.e. to construct the proof with signature
geRefl : GE n n
My first attempt was to simply try geRefl {n} = Ge n Z
, but this has type Ge n (add n Z)
. To get this to unify with the desired signature, we obviously have to perform some kind of rewrite, presumably involving the lemma
plusZeroRightNeutral : (left : Nat) -> left + fromInteger 0 = left
My best attempt is the following:
geRefl : GE n n
geRefl {n} = x
where x : GE n (n + Z)
x = rewrite plusZeroRightNeutral n in Ge n Z
but this does not typecheck.
Can you please give a correct proof of this theorem, and explain the reasoning behind it?
GE : (m : Nat) -> (n : Nat) -> GE n (m + n)
instead. ThengeRefl = GE Z
. – Izaak