Im trying to determine the "difficultly" of a quiz object.
My ultimate goal is to be able to create a "difficulty score" (DS) for any quiz. This would allow me to compare one quiz to another accurately, despite being made up of different questions/answers.
When creating my quiz object, I assign each question a "difficulty index" (DI), which is number on a scale from 1-15.
15 = most difficult
1 = least difficult
Now a strait forward way to measure this "difficulty score" could be to add up each question's "difficulty index" then divide by maximum possible "difficulty index" for the quiz. ( ex. 16/30 = 53.3% Difficulty )
However, I also have multiple "weighting" properties associated to each question. These weights are again one a scale of 1-5.
5 = most impact
1 = least impact
The reason I have (2) instead of the more common (1) is so I can accommodate a scenario as follows...
If presenting the student with a very difficult question (DI=15) and the student answers "incorrect", don't have it hurt their score so much BUT if they get it "correct" have it improve their score greatly. I call these my "positive" (PW) and "negative" (NW) weights.
Quiz Example A:
Question 1: DI = 1 | PW = 3 | NW = 3
Question 2: DI = 1 | PW = 3 | NW = 3
Question 3: DI = 1 | PW = 3 | NW = 3
Question 4: DI = 15 | PW = 5 | NW = 1
Quiz Example B:
Question 1: DI = 1 | PW = 3 | NW = 3
Question 2: DI = 1 | PW = 3 | NW = 3
Question 3: DI = 1 | PW = 3 | NW = 3
Question 4: DI = 15 | PW = 1 | NW = 5
Technically the above two quizzes are very similar BUT Quiz B should be more "difficult" because the hardest question will have the greatest impact on your score if you get it wrong.
My question now becomes how can I accurately determine the "difficulty score" when considering the complex weighting system?
Any help is greatly appreciated!
DS=sum(DI_i * PW_i) for all i / card(i)
which results inlower_value=higher-difficulty
(could always swap PW/NW). In the current formulation above PW/NW also looks symmetric and should be reduced (what has already been done in my simple approach – Cockneyism