I have an app that aggregates various sports content (news articles, videos, discussions from users, tweets) and I'm currently working on having it so that it'll display relevant content to the users. Each post has a like button so I'm using that to determine what's popular. I'm using the reddit algorithm to have it sorted on popularity but also factor in time. However, my problem is that I want to make it more personalized for each user. Each user should see more content based on what they like. I have several factors I'm measuring: - How many of each content they watch/click on? Ex: 60% videos and 40% articles - What teams/players they like? If a news is about a team they like, it should be weighed more heavily - What sport they like more? Users can follow several sports
What I'm currently doing: For each of the factors listed above, I'll increase the popularity score by X of an article. Ex: user likes videos 70% than other content. I'll increase the score of videos by 70%.
I'm looking to see if there's better ways to do this? I've been told machine learning would be a good way but I wanted to see if there are any alternatives out there.