I am trying to fit a crossed non-linear random effect model as the linear random effect models as mentioned in this question and in this mailing list post using the nlme
package. Though, I get an error regardless of what I try. Here is an example
library(nlme)
#####
# simulate data
set.seed(18112003)
na <- 30
nb <- 30
sigma_a <- 1
sigma_b <- .5
sigma_res <- .33
n <- na*nb
a <- gl(na,1,n)
b <- gl(nb,na,n)
u <- gl(1,1,n)
x <- runif(n, -3, 3)
y_no_noise <- x + sin(2 * x)
y <-
x + sin(2 * x) +
rnorm(na, sd = sigma_a)[as.integer(a)] +
rnorm(nb, sd = sigma_b)[as.integer(b)] +
rnorm(n, sd = sigma_res)
#####
# works in the linear model where we know the true parameter
fit <- lme(
# somehow we found the right values
y ~ x + sin(2 * x),
random = list(u = pdBlocked(list(pdIdent(~ a - 1), pdIdent(~ b - 1)))))
vv <- VarCorr(fit)
vv2 <- vv[c("a1", "b1"), ]
storage.mode(vv2) <- "numeric"
print(vv2,digits=4)
#R Variance StdDev
#R a1 1.016 1.0082
#R b1 0.221 0.4701
#####
# now try to do the same with `nlme`
fit <- nlme(
y ~ c0 + sin(c1),
fixed = list(c0 ~ x, c1 ~ x - 1),
random = list(u = pdBlocked(list(pdIdent(~ a - 1), pdIdent(~ b - 1)))),
start = c(0, 0.5, 1))
#R Error in nlme.formula(y ~ a * x + sin(b * x), fixed = list(a ~ 1, b ~ :
#R 'random' must be a formula or list of formulae
The lme
example is similar to the one page 163-166 of "Mixed-effects Models in S and S-PLUS" with only 2 random effects instead of 3.