The problem you are trying to solve is similar to the shortest path through a fully connected (mesh) network, where you are not allowed to visit each vertex/node more than once, and you don't care about connecting the minimal pairs.
This problem is approachable when using techniques from graph theory, metric spaces, and other results from computational geometry.
This problem is similar the wiki article on the Closest pair of points problem, and the article offers some useful insights regarding Voroni diagrams and Delaunay triangulation, as well as using Recursive Divide and Conquer algorithms to solve the problem.
Note that solving the closest pair of points is not the solution, as you could have four points (A,B,C,D) in a line, where d(B,C) is least, but then you would also have d(A,D), and the sum would be larger than d(A,B) and d(C,D).
This stackoverflow question explains how to find the shortest distance between two points, and has a useful hint to skip computing the square root while comparing distances. Answers suggest using a divide and conquer approach (linear), but observe that splitting both X and Y coordinates might partition more appropriately.
This math stackexchange question addresses a similar problem, and suggests using Prim's algorithm, Kruskal's algorithm, or notes that this is a special case of the Travelling Salesman problem, which is NP-hard.
My approach would be to solve your problem (pairing the closest points) using a greedy algorithm to compute a minimal spanning tree, and then remove from the spanning tree 1/2 the edges (leaving disconnected pairs). Likely using a second (variant) of a greedy algorithm.