I'm using the following procedure to calculate hexagonal polygon coordinates of a given radius for a square grid of a given extent (lower left --> upper right):
def calc_polygons(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
# calculate coordinates of the hexagon points
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
origx = startx
origy = starty
# offsets for moving along and up rows
xoffset = b
yoffset = 3 * p
polygons = []
row = 1
counter = 0
while starty < endy:
if row % 2 == 0:
startx = origx + xoffset
else:
startx = origx
while startx < endx:
p1x = startx
p1y = starty + p
p2x = startx
p2y = starty + (3 * p)
p3x = startx + b
p3y = starty + h
p4x = startx + w
p4y = starty + (3 * p)
p5x = startx + w
p5y = starty + p
p6x = startx + b
p6y = starty
poly = [
(p1x, p1y),
(p2x, p2y),
(p3x, p3y),
(p4x, p4y),
(p5x, p5y),
(p6x, p6y),
(p1x, p1y)]
polygons.append(poly)
counter += 1
startx += w
starty += yoffset
row += 1
return polygons
This works well for polygons into the millions, but quickly slows down (and takes up very large amounts of memory) for large grids. I'm wondering whether there's a way to optimise this, possibly by zipping together numpy arrays of vertices that have been calculated based on the extents, and removing the loops altogether – my geometry isn't good enough for this, however, so any suggestions for improvements are welcome.