Trying to optimize a portfolio weight allocation here which maximize my return function by limit risk. I have no problem to find the optimized weight that yields to my return function by simple constraint that the sum of all weight equals to 1, and make the other constraint that my total risk is below target risk.
My problem is, how can I add industry weight bounds for each group?
My code is below:
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import scipy.optimize as sco
dates = pd.date_range('1/1/2000', periods=8)
industry = ['industry', 'industry', 'utility', 'utility', 'consumer']
symbols = ['A', 'B', 'C', 'D', 'E']
zipped = list(zip(industry, symbols))
index = pd.MultiIndex.from_tuples(zipped)
noa = len(symbols)
data = np.array([[10, 9, 10, 11, 12, 13, 14, 13],
[11, 11, 10, 11, 11, 12, 11, 10],
[10, 11, 10, 11, 12, 13, 14, 13],
[11, 11, 10, 11, 11, 12, 11, 11],
[10, 11, 10, 11, 12, 13, 14, 13]])
market_to_market_price = pd.DataFrame(data.T, index=dates, columns=index)
rets = market_to_market_price / market_to_market_price.shift(1) - 1.0
rets = rets.dropna(axis=0, how='all')
expo_factor = np.ones((5,5))
factor_covariance = market_to_market_price.cov()
delta = np.diagflat([0.088024, 0.082614, 0.084237, 0.074648,
0.084237])
cov_matrix = np.dot(np.dot(expo_factor, factor_covariance),
expo_factor.T) + delta
def calculate_total_risk(weights, cov_matrix):
port_var = np.dot(np.dot(weights.T, cov_matrix), weights)
return port_var
def max_func_return(weights):
return -np.sum(rets.mean() * weights)
# optimized return with given risk
tolerance_risk = 27
noa = market_to_market_price.shape[1]
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1},
{'type': 'eq', 'fun': lambda x: calculate_total_risk(x, cov_matrix) - tolerance_risk})
bnds = tuple((0, 1) for x in range(noa))
init_guess = noa * [1. / noa,]
opts_mean = sco.minimize(max_func_return, init_guess, method='SLSQP',
bounds=bnds, constraints=cons)
In [88]: rets
Out[88]:
industry utility consumer
A B C D E
2000-01-02 -0.100000 0.000000 0.100000 0.000000 0.100000
2000-01-03 0.111111 -0.090909 -0.090909 -0.090909 -0.090909
2000-01-04 0.100000 0.100000 0.100000 0.100000 0.100000
2000-01-05 0.090909 0.000000 0.090909 0.000000 0.090909
2000-01-06 0.083333 0.090909 0.083333 0.090909 0.083333
2000-01-07 0.076923 -0.083333 0.076923 -0.083333 0.076923
2000-01-08 -0.071429 -0.090909 -0.071429 0.000000 -0.071429
In[89]: opts_mean['x'].round(3)
Out[89]: array([ 0.233, 0.117, 0.243, 0.165, 0.243])
how can I add such group bound such that sum of 5 assets falling into to below bound?
model = pd.DataFrame(np.array([.08,.12,.05]), index= set(industry), columns = ['strategic'])
model['tactical'] = [(.05,.41), (.2,.66), (0,.16)]
In [85]: model
Out[85]:
strategic tactical
industry 0.08 (0.05, 0.41)
consumer 0.12 (0.2, 0.66)
utility 0.05 (0, 0.16)
I have read this similar post SciPy optimization with grouped bounds but still can't get any clues, can any body help? Thank you.