I am learning about designing Convolutional Neural Networks using Keras. I have developed a simple model using VGG16 as the base. I have about 6 classes of images in the dataset. Here are the code and description of my model.
model = models.Sequential()
conv_base = VGG16(weights='imagenet' ,include_top=False, input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
conv_base.trainable = False
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.001)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(6, activation='sigmoid'))
Here is the code for compiling and fitting the model:
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
model.summary()
callbacks = [
EarlyStopping(monitor='acc', patience=1, mode='auto'),
ModelCheckpoint(monitor='val_loss', save_best_only=True, filepath=model_file_path)
]
history = model.fit_generator(
train_generator,
steps_per_epoch=10,
epochs=EPOCHS,
validation_data=validation_generator,
callbacks = callbacks,
validation_steps=10)
Here is the code for prediction of a new image
img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
plt.figure(index)
imgplot = plt.imshow(img)
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
prediction = model.predict(x)[0]
# print(prediction)
Often model.predict() method predicts more than one class.
[0 1 1 0 0 0]
I have a couple of questions
- Is it normal for a multiclass classification model to predict more than one output?
- How is accuracy measured during training time if more than one class was predicted?
- How can I modify the neural network so that only one class is predicted?
Any help is appreciated. Thank you so much!