I am trying to write a FORTRAN code to evaluate the fast Fourier transform of the Gaussian function f(r)=exp(-(r^2))
using FFTW3
library. As everyone knows, the Fourier transform of the Gaussian function is another Gaussian function.
I consider evaluating the Fourier-transform integral of the Gaussian function in the spherical coordinate.
Hence the resulting integral can be simplified to be integral of [r*exp(-(r^2))*sin(kr)]dr
.
I wrote the following FORTRAN code to evaluate the discrete SINE transform DST which is the discrete Fourier transform DFT using a PURELY real input array. DST is performed by C_FFTW_RODFT00
existing in FFTW3
, taking into account that the discrete values in position space are r=i*delta (i=1,2,...,1024), and the input array for DST is the function r*exp(-(r^2))
NOT the Gaussian. The sine function in the integral of [r*exp(-(r^2))*sin(kr)]dr
resulting from the INTEGRATION over the SPHERICAL coordinates, and it is NOT the imaginary part of exp(ik.r)
that appears when taking the analytic Fourier transform in general.
However, the result is not a Gaussian function in the momentum space.
Module FFTW3
use, intrinsic :: iso_c_binding
include 'fftw3.f03'
end module
program sine_FFT_transform
use FFTW3
implicit none
integer, parameter :: dp=selected_real_kind(8)
real(kind=dp), parameter :: pi=acos(-1.0_dp)
integer, parameter :: n=1024
real(kind=dp) :: delta, k
real(kind=dp) :: numerical_F_transform
integer :: i
type(C_PTR) :: my_plan
real(C_DOUBLE), dimension(1024) :: y
real(C_DOUBLE), dimension(1024) :: yy, yk
integer(C_FFTW_R2R_KIND) :: C_FFTW_RODFT00
my_plan= fftw_plan_r2r_1d(1024,y,yy,FFTW_FORWARD, FFTW_ESTIMATE)
delta=0.0125_dp
do i=1, n !inserting the input one-dimension position function
y(i)= 2*(delta)*(i-1)*exp(-((i-1)*delta)**2)
! I multiplied by 2 due to the definition of C_FFTW_RODFT00 in FFTW3
end do
call fftw_execute_r2r(my_plan, y,yy)
do i=2, n
k = (i-1)*pi/n/delta
yk(i) = 4*pi*delta*yy(i)/2 !I divide by 2 due to the definition of
!C_FFTW_RODFT00
numerical_F_transform=yk(i)/k
write(11,*) i,k,numerical_F_transform
end do
call fftw_destroy_plan(my_plan)
end program
Executing the previous code gives the following plot which is not for Gaussian function.
Can anyone help me understand what the problem is? I guess the problem is mainly due to FFTW3
. Maybe I did not use it properly especially concerning the boundary conditions.