I am using my data to train a GLM model (poisson family) using python statsmodels package. The data I have contains both numeric values and categorical values. I did standardization for numeric values and one-hot-encoding on categorical values (drop the first level). When I fit the data into the model, I got the following exceptions:
~/miniconda3/envs/losscost/lib/python3.7/site-packages/insite/losscost/losscost.py in evaluate(self, x, control, peril_descs)
271 family=sm.families.Poisson(link=sm.families.links.log()),
272 )
--> 273 freq_fitted = freq_glm.fit()
274 freq_results[name].append(freq_fitted)
275
~/miniconda3/envs/losscost/lib/python3.7/site-packages/statsmodels/genmod/generalized_linear_model.py in fit(self, start_params, maxiter, method, tol, scale, cov_type, cov_kwds, use_t, full_output, disp, max_start_irls, **kwargs)
1025 return self._fit_irls(start_params=start_params, maxiter=maxiter,
1026 tol=tol, scale=scale, cov_type=cov_type,
-> 1027 cov_kwds=cov_kwds, use_t=use_t, **kwargs)
1028 else:
1029 self._optim_hessian = kwargs.get('optim_hessian')
~/miniconda3/envs/losscost/lib/python3.7/site-packages/statsmodels/genmod/generalized_linear_model.py in _fit_irls(self, start_params, maxiter, tol, scale, cov_type, cov_kwds, use_t, **kwargs)
1163 wls_mod = reg_tools._MinimalWLS(wlsendog, wlsexog,
1164 self.weights, check_endog=True,
-> 1165 check_weights=True)
1166 wls_results = wls_mod.fit(method=wls_method)
1167 lin_pred = np.dot(self.exog, wls_results.params)
~/miniconda3/envs/losscost/lib/python3.7/site-packages/statsmodels/regression/_tools.py in __init__(self, endog, exog, weights, check_endog, check_weights)
46 if check_weights:
47 if not np.all(np.isfinite(w_half)):
---> 48 raise ValueError(self.msg.format('weights'))
49
50 if check_endog:
ValueError: NaN, inf or invalid value detected in weights, estimation infeasible.
I tried to train only on numeric values and it works fine. What could be the reason to cause this issue?