I am a visual person. Here is what works for me as an intuition.
Say each of the things you want to search for approximately are physical objects such as an apple, a cube, a chair.
My intuition for an LSH is that it is similar to take the shadows of these objects. Like if you take the shadow of a 3D cube you get a 2D square-like on a piece of paper, or a 3D sphere will get you a circle-like shadow on a piece of paper.
Eventually, there are many more than three dimensions in a search problem (where each word in a text could be one dimension) but the shadow analogy is still very useful to me.
Now we can efficiently compare strings of bits in software. A fixed length bit string is kinda, more or less, like a line in a single dimension.
So with an LSH, I project the shadows of objects eventually as points (0 or 1) on a single fixed length line/bit string.
The whole trick is to take the shadows such that they still make sense in the lower dimension e.g. they resemble the original object in a good enough way that can be recognized.
A 2D drawing of a cube in perspective tells me this is a cube. But I cannot distinguish easily a 2D square from a 3D cube shadow without perspective: they both looks like a square to me.
How I present my object to the light will determine if I get a good recognizable shadow or not. So I think of a "good" LSH as the one that will turn my objects in front of a light such that their shadow is best recognizable as representing my object.
So to recap: I think of things to index with an LSH as physical objects like a cube, a table, or chair, and I project their shadows in 2D and eventually along a line (a bit string). And a "good" LSH "function" is how I present my objects in front of a light to get an approximately distinguishable shape in the 2D flatland and later my bit string.
Finally when I want to search if an object I have is similar to some objects that I indexed, I take the shadows of this "query" object using the same way to present my object in front of the light (eventually ending up with a bit string too). And now I can compare how similar is that bit string with all my other indexed bit strings which is a proxy for searching for my whole objects if I found a good and recognizable way to present my objects to my light.