If you mark the base function as deleted (= delete
), you can detect if it has been specialized using SFINAE (assuming the specialization itself is not deleted)
An expression like decltype(foo<N>())
will result in a substitution failure if foo<N>
is marked as deleted. If you provide a specialization that is not deleted on the other hand the expression will not result in an error.
Using this you can create a simple trait class to check if foo
has been specialized for a specific set of template parameters:
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
1. Basic examples
C++11: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
int main()
{
static_assert(!is_foo_specialized<0>::value, ""); // foo<0> is not specialized
static_assert(is_foo_specialized<1>::value, ""); // foo<1> IS specialized
}
With C++20 you could also use a concept for this, e.g.: godbolt
#include <type_traits>
template<std::size_t N>
void foo() = delete;
template<>
void foo<1>() { }
template<std::size_t N>
concept is_foo_specialized = requires { foo<N>(); };
int main()
{
static_assert(!is_foo_specialized<0>); // foo<0> is not specialized
static_assert(is_foo_specialized<1>); // foo<1> IS specialized
}
2. Providing a default implementation
Due to the function being = delete
'd it can't have a default implementation.
If you do require a default implementation for the function, you could use 2 functions instead:
- one that is
= delete
'd (so SFINAE can detect it)
- and another one that implements the default behaviour and forwards to the other if a specialization exists
C++11: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialized() = delete;
template<>
void foo_specialized<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo_specialized<N>(), void())> : std::true_type {};
template<std::size_t N>
typename std::enable_if<!is_foo_specialized<N>::value>::type foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N>
typename std::enable_if<is_foo_specialized<N>::value>::type foo() {
foo_specialized<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
Or with C++20: godbolt
#include <type_traits>
#include <iostream>
template<std::size_t N>
void foo_specialize() = delete;
template<>
void foo_specialize<1>() { std::cout << "CUSTOMIZED!" << std::endl; }
template<std::size_t N>
concept is_foo_specialized = requires { foo_specialize<N>(); };
template<std::size_t N> requires (!is_foo_specialized<N>)
void foo() {
std::cout << "DEFAULT!" << std::endl;
}
template<std::size_t N> requires (is_foo_specialized<N>)
void foo() {
foo_specialize<N>();
}
int main()
{
foo<0>(); // -> DEFAULT!
foo<1>(); // -> CUSTOMIZED!
}
3. Compile-time shenanigans
This can of course also be used to iterate the specializations (within a certain limit) - or like you asked in the comments to find the nearest specialization of the function.
nearest_foo_specialized
in this example will iterate over a range of values for N
and check if a specialization of foo
exists for this value.
N
is the value where we want to start the search
SearchRange
determines how many specializations will be checked (both up and down) from the provided N
value (in this example we check for N
's +/- 10)
CurrentDistance
keeps track how far we've already searched from our starting N
value, so we don't exceed the specified SearchRange
- The last template parameter is used for SFINAE
e.g.:
nearest_foo_specialized<100, 10>
would check for specializations of foo
between N = 90
and N = 110
, returning the one that is closer to 100 (prefering lower N
values in case of a draw)
Example C++11: godbolt
#include <type_traits>
#include <iostream>
#include <utility>
template<std::size_t N>
void foo() = delete;
template<>
void foo<5>() { std::cout << 5 << std::endl; }
template<>
void foo<10>() { std::cout << 10 << std::endl; }
template<>
void foo<15>() { std::cout << 15 << std::endl; }
template<std::size_t N, class = void>
struct is_foo_specialized : std::false_type {};
template<std::size_t N>
struct is_foo_specialized<N, decltype(foo<N>(), void())> : std::true_type {};
template<std::size_t N, std::size_t SearchRange = 10, std::size_t CurrentDistance = 0, class = void>
struct nearest_foo_specialized {
static const std::size_t index = 0; // an index for which foo<> is specialized, if value is true.
static const std::size_t distance = CurrentDistance; // distance from original N
static const bool value = false; // have we found a specialization yet?
};
// Found a match -> Report Success
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance <= SearchRange && is_foo_specialized<N>::value >::type> {
static const std::size_t index = N;
static const std::size_t distance = CurrentDistance;
static const bool value = true;
};
// No match found -> recurse until SearchRange limit
template<std::size_t N, std::size_t SearchRange, std::size_t CurrentDistance>
struct nearest_foo_specialized<N, SearchRange, CurrentDistance, typename std::enable_if< CurrentDistance < SearchRange && !is_foo_specialized<N>::value >::type> {
typedef nearest_foo_specialized<N - 1, SearchRange, CurrentDistance + 1> down;
typedef nearest_foo_specialized<N + 1, SearchRange, CurrentDistance + 1> up;
static const std::size_t distance = down::distance < up::distance ? down::distance : up::distance;
static const std::size_t index = down::distance == distance && down::value ? down::index : up::index;
static const std::size_t value = down::distance == distance && down::value ? down::value : up::value;
};
// calls the nearest foo() specialization (up to 10 away from the specified N)
template<std::size_t N>
typename std::enable_if<nearest_foo_specialized<N>::value>::type call_nearest_foo() {
foo<nearest_foo_specialized<N>::index>();
}
template<std::size_t N>
typename std::enable_if<!nearest_foo_specialized<N>::value>::type call_nearest_foo() {
static_assert(N!=N, "No nearest foo() specialization found!");
}
int main() {
call_nearest_foo<7>(); // calls foo<5>()
call_nearest_foo<8>(); // calls foo<10>()
call_nearest_foo<11>(); // calls foo<10>()
call_nearest_foo<15>(); // calls foo<15>()
call_nearest_foo<25>(); // calls foo<15>()
// call_nearest_foo<26>(); // error: No nearest foo() (only searching up to 10 up / down)
}
std::integral_constant<size_t, 42>
to the functions. But I was hoping there might be a cleaner solution out there... – Unreasonfoo
as many times as he likes, then call a template function in the library with a certainsize_t
template argument, and this function will delegate to the function that was specialized with the nearest number. Is that possible? – Unreason