I'm doing an inter-procedrual analysis project in Java at the moment and I'm looking into using an IFDS solver to compute the control flow graph of a program. I'm finding it hard to follow the maths involved in the description of the IFDS framework and graph reachability. I've read in several places that its not possible to compute the points-to sets of a program using this solver as "pointer analysis is known to be a non-distributive problem." [1] Other sources have said that this is often specifically with regard to 'strong updates', which from what I can gather are field write statements.
I think I can basically follow how the solver computes edges and works out the dataflow facts. But I don't quite follow what this: f(A ∪ B) = f(A) ∪ f(B) means in practical terms as a definition of a distributive function, and therefore what it means to say that points-to analysis deals with non-distributive functions.
The linked source [1] gives an example specific to field write statements:
A a = new A();
A b = a;
A c = new C();
b.f = c;
It claims that in order to reason about the assignment to b.f one must also take into account all aliases of the base b. I can follow this. But what I don't understand is what are the properties of this action that make it non-distributive.
A similar (I think) example from [2]:
x = y.n
Where before the statement there are points-to edges y-->obj1 and obj1.n-->obj2 (where obj1 and 2 are heap objects). They claim
it is not possible to correctly deduce that the edge x-->obj2 should be generated after the statement if we consider each input edge independently. The flow function for this statement is a function of the points-to graph as a whole and cannot be decomposed into independent functions of each edge and then merged to get a correct result.
I think I almost understand what, at least the first, example is saying but that I am not getting the concept of distributive functions which is blocking me getting the full picture. Can anyone explain what a distributive or non-distributive function is on a practical basis with regards to pointer analysis, without using set theory which I am having difficulty following?
[1] http://karimali.ca/resources/pubs/conf/ecoop/SpaethNAB16.pdf
[2] http://dl.acm.org/citation.cfm?doid=2487568.2487569 (paywall, sorry)