Averaging daily data into weekly data
Asked Answered
L

4

5

I am wondering if there is a way to average daily data into weekly data. The dataframe that I call CADaily looks like this:

      > CADaily[1:10, ]
          Climate_Division       Date      Rain
      885                1 1948-07-01 0.8750000
      892                1 1948-07-02 2.9166667
      894                1 1948-07-03 0.7916667
      895                1 1948-07-04 0.4305556
      898                1 1948-07-05 0.8262061
      901                1 1948-07-06 0.5972222
      904                1 1948-07-17 0.04166667
      905                1 1948-07-18 0.08333333
      907                1 1948-07-20 0.04166667
      909                1 1948-07-22 0.12500000
      910                1 1948-07-21 NA

My objective is similar to the aggregate function to find the average of the daily rain into weekly rain values base on the Date (of course) and the Climate_Division (ranges from 1 to 7). I was searching online and I came across a code that I was able to use but wasn't quite to par to my objective:

      apply.weekly(xts(CADaily[,-2], order.by= CADaily[,2]), FUN = mean)

This does what I would like it to do, however my column Climate_Division is also averaged. I would simply like to average Rain only and order it based on the Climate_Division followed by Date. Is there a way that I can possibly do it as follows:

      aggregate(CADaily, by =list(CADaily$Climate_Division, CADaily$Date), FUN = mean, na.rm = TRUE)

where Date is in some form of weeks? Or is there another way?


EDIT:

Dear All,

Thank you for your help. Perhaps using aggregate wasn't the best way to go about this as I originally thought. In terms of output, I wanted to obtain the weekly average of rain throughout the years of the data (1948 - 1995). In other words, I wanted to get a nice format that I can input into a time series that has the form of the date of the end of the week. The output that I am looking for (keeping in mind that there may exist NA values) is:

      Climate_Division     Date          Rain
      1                    1948-07-03    1.527778
      1                    1948-07-10    0.6179946
      1                    1948-07-17    0.04166667
      1                    1948-07-24    0.08333333
      ...
      1                    1995-12-23    0.24513245
      1                    1995-12-30    0.12450545

Or is there a better way of expressing weekly data that is represented by dates?

Thank you for your help.

Latrell answered 27/2, 2013 at 0:55 Comment(0)
F
4

Updated answer

Based on the OP's update on the request, I modified the code to aggregate the data over the date of a defined day of each week (Saturday). This time I only use functions available in base R. It ignores NAs (if there are only NAs for a given End_of_Week-Climate_Division you get NaN, not a number).

# Data with another Climate division as example (same daily values and dates)
CADaily <-
structure(list(Climate_Division = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), Date = structure(c(1L, 2L, 
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 
8L, 9L, 10L), .Label = c("01/07/1948", "02/07/1948", "03/07/1948", 
"04/07/1948", "05/07/1948", "06/07/1948", "17/07/1948", "18/07/1948", 
"20/07/1948", "22/07/1948"), class = "factor"), Rain = c(0.875, 
2.9166667, 0.7916667, 0.4305556, 0.8262061, 0.5972222, 0.04166667, 
0.08333333, 0.04166667, 0.125, 0.875, 2.9166667, 0.7916667, 0.4305556, 
0.8262061, 0.5972222, 0.04166667, 0.08333333, 0.04166667, 0.125
), week = c(27, 27, 27, 27, 27, 27, 29, 29, 29, 30, 27, 27, 27, 
27, 27, 27, 29, 29, 29, 30)), .Names = c("Climate_Division", 
"Date", "Rain", "week"), row.names = c(NA, 20L), class = "data.frame")

# Coerce to Date class
CADaily$Date <- as.Date(x=CADaily$Date, format='%d/%m/%Y')

# Extract day of the week (Saturday = 6)
CADaily$Week_Day <- as.numeric(format(CADaily$Date, format='%w'))

# Adjust end-of-week date (first saturday from the original Date)
CADaily$End_of_Week <- CADaily$Date + (6 - CADaily$Week_Day)

# Aggregate over week and climate division
aggregate(Rain~End_of_Week+Climate_Division, FUN=mean, data=CADaily, na.rm=TRUE)

# Output
#   End_of_Week Climate_Division       Rain
# 1  1948-07-03                1 1.52777780
# 2  1948-07-10                1 0.61799463
# 3  1948-07-17                1 0.04166667
# 4  1948-07-24                1 0.08333333
# 5  1948-07-03                2 1.52777780
# 6  1948-07-10                2 0.61799463
# 7  1948-07-17                2 0.04166667
# 8  1948-07-24                2 0.08333333

Additional operations

Also, using this code you can obtain results from additional aggregation functions, assuming the result is an atomic vector of the same length for every week-division pair.

# Aggregate over week and climate division, and show the total number of
# observations per week, the number of observations which represent missing
# values, the average, and the standard deviation.
aggregate(Rain~End_of_Week+Climate_Division, data=CADaily,
          FUN=function(x) c(n=length(x),
                            NAs=sum(is.na(x)),
                            Average=mean(x, na.rm=TRUE),
                            SD=sd(x, na.rm=TRUE)))

# Output. You get NA for the standard deviation if there is only one observation.
#   End_of_Week Climate_Division     Rain.n   Rain.NAs Rain.Average    Rain.SD
# 1  1948-07-03                1 3.00000000 0.00000000   1.52777780 1.20353454
# 2  1948-07-10                1 3.00000000 0.00000000   0.61799463 0.19864151
# 3  1948-07-17                1 1.00000000 0.00000000   0.04166667         NA
# 4  1948-07-24                1 3.00000000 0.00000000   0.08333333 0.04166667
# 5  1948-07-03                2 3.00000000 0.00000000   1.52777780 1.20353454
# 6  1948-07-10                2 3.00000000 0.00000000   0.61799463 0.19864151
# 7  1948-07-17                2 1.00000000 0.00000000   0.04166667         NA
# 8  1948-07-24                2 3.00000000 0.00000000   0.08333333 0.04166667



Original answer

Try with the lubridate package. Load it, and then aggregate (kept for the record as part of the original answer, which reflected the OP's request to aggregate by week).

# Load lubridate package
library(package=lubridate)

# Set Weeks number. Date already of class `Date`
CADaily$Week <- week(CADaily$Date)

# Aggregate over week number and climate division
aggregate(Rain~Week+Climate_Division, FUN=mean, data=CADaily, na.rm=TRUE)

# Output
#   Week Climate_Division       Rain
# 1   27                1 1.07288622
# 2   29                1 0.05555556
# 3   30                1 0.12500000
# 4   27                2 1.07288622
# 5   29                2 0.05555556
# 6   30                2 0.12500000
Ferroconcrete answered 27/2, 2013 at 1:2 Comment(5)
Dear Oscar, Thank you for your help. Perhaps using aggregate wasn't the best way to go about this as I originally thought. In terms of output, I wanted to obtain the weekly average of rain throughout the years of the data (1948 - 1995). In other words, I wanted to get a nice format that I can input into a time series that has the form of the date of the end of the week. For example:Latrell
Sorry, for not fitting everything in the above comment, I'll edit it on the main question.Latrell
Ah, using the end of the week instead of the week number of the year is easy, and we will dispense of using non-base package. Basically you should get the weekday for each date, and add to the date the number of days left until the Saturday of that week. I'll update the answer when I get to work later.Presuppose
Perfect! Does what I would like. Thank you for all your help Oscar.Latrell
@OscardeLeón, with respect to your original answer I think it should be week not Week in the CADaily$Week <- Week(CADaily$Date).Bubaline
M
1

xts is great for such manipulations. Use endpoints to subset data, then sapply to treat it weekly.

CADaily <- read.table(text ='     Climate_Division       Date      Rain
      885                1 1948-07-01 0.8750000
      892                1 1948-07-02 2.9166667
      894                1 1948-07-03 0.7916667
      895                1 1948-07-04 0.4305556
      898                1 1948-07-05 0.8262061
      901                1 1948-07-06 0.5972222
      904                1 1948-07-17 0.04166667
      905                1 1948-07-18 0.08333333
      907                1 1948-07-20 0.04166667
      909                1 1948-07-22 0.12500000',head=T)
dat.xts <- xts(CADaily[,-2], order.by= as.POSIXct(CADaily[,2]))
INDEX <- endpoints(dat.xts, 'weeks')

lapply(1:(length(INDEX) - 1), function(y) {
    y <- dat.xts[(INDEX[y] + 1):INDEX[y + 1]]
    data.frame(y$Climate_Division,mean(y$Rain))

  })

My result is a list by week:

[[1]]
           Climate_Division mean.y.Rain.
1948-07-01                1     1.168019
1948-07-02                1     1.168019
1948-07-03                1     1.168019
1948-07-04                1     1.168019
1948-07-05                1     1.168019

[[2]]
           Climate_Division mean.y.Rain.
1948-07-06                1    0.5972222

[[3]]
           Climate_Division mean.y.Rain.
1948-07-17                1       0.0625
1948-07-18                1       0.0625

[[4]]
           Climate_Division mean.y.Rain.
1948-07-20                1   0.08333334
1948-07-22                1   0.08333334
Munmro answered 27/2, 2013 at 1:20 Comment(6)
This is great, however, when I ran the full data using your algorithm I am across many warnings: Warning messages: 1: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 2,3,4,5,6,7,9,12,13,15,16 --> row.names NOT used using the command tail(x), where x is what I set equal to what is returned by the function lapply, I don't obtain the dates when all divisions are present at a certain date:Latrell
[[140]] Climate_Division mean.y.Mean..na.rm...TRUE. 1948-05-28 17:00:00 2 4.020833 1948-05-29 17:00:00 2 4.020833 [[141]] Climate_Division mean.y.Mean..na.rm...TRUE. 1948-05-31 17:00:00 2 0.02083333 1948-06-05 17:00:00 2 0.02083333Latrell
[[142]] Climate_Division mean.y.Mean..na.rm...TRUE. 1 1 0.486447 2 2 0.486447 3 3 0.486447 4 4 0.486447 5 5 0.486447 6 6 0.486447 7 7 0.486447 8 1 0.486447 9 2 0.486447 10 1 0.486447 11 1 0.486447Latrell
@LucianoRodriguez I am lost !:)Munmro
@ agstudy, sorry for getting you lost, I am not quite familiar on how to make the text nice within a comment. But the output that I am looking for is in the edited version of my main question. Let me know if that is still confusing : /Latrell
I simply want to get the average weekly (say at the end of the week on Saturday) if the data is available and may contain NA values for all weeks from 1948 - 1995.Latrell
B
1

just do:

library(tidyverse)
library(lubridate)

df <- df %>% 
  group_by(week = week(Date)) %>% #make sure 'Date' is a Date.object
  mutate("rain_mean" = mean(Rain))
Becka answered 2/9, 2021 at 1:6 Comment(2)
Please provide additional details in your answer. As it's currently written, it's hard to understand your solution.Shred
My understanding is that this solution would not work properly if the range of Date exceeds a solar year. To clarify, week(ymd("2011-01-07")) == week(ymd("2012-01-07")) returns TRUE. Is it possible to tweak your solution to accommodate this?Gyve
W
0

I backtrack from my previous answer. I think this one is much simpler.

You just need to find what is coming weekend date for each row, and then aggregate

CADaily <- read.table(text = "Climate_Division       Date      Rain\n1 1948-07-01 0.8750000\n1 1948-07-02 2.9166667\n1 1948-07-03 0.7916667\n1 1948-07-04 0.4305556\n1 1948-07-05 0.8262061\n1 1948-07-06 0.5972222\n1 1948-07-17 0.04166667\n1 1948-07-18 0.08333333\n1 1948-07-20 0.04166667\n1 1948-07-22 0.12500000\n2 1948-07-01 0.8750000\n2 1948-07-02 2.9166667\n2 1948-07-03 0.7916667\n2 1948-07-04 0.4305556\n2 1948-07-05 0.8262061\n2 1948-07-06 0.5972222\n2 1948-07-17 0.04166667\n2 1948-07-18 0.08333333\n2 1948-07-20 0.04166667\n2 1948-07-22 0.12500000", 
    head = T)

CADaily$weekend <- as.POSIXlt(CADaily$Date) + (7 - as.POSIXlt(CADaily$Date)$wday) * 24 * 60 * 60

aggregate(Rain ~ weekend + Climate_Division, data = CADaily, FUN = mean)
##      weekend Climate_Division       Rain
## 1 1948-07-04                1 1.52777780
## 2 1948-07-11                1 0.61799463
## 3 1948-07-18                1 0.04166667
## 4 1948-07-25                1 0.08333333
## 5 1948-07-04                2 1.52777780
## 6 1948-07-11                2 0.61799463
## 7 1948-07-18                2 0.04166667
## 8 1948-07-25                2 0.08333333
Wherefrom answered 27/2, 2013 at 6:2 Comment(5)
Dear geektrader, Thank you for you input. However, looking at your output, the results are separated by division but they are not weekly values. For example, the first output is on 1948-07-05, while the second one is the next day 1948-07-06. So this is not necessarily weekly. Is there a way to do the average on Saturday of every week possibly?Latrell
@LucianoRodriguez I have edited my answer do it in much simpler way working directly with data.frame itselfWherefrom
@geektrader Just as I suggested earlier. Try using strptime with format='%w'. That will give you the weekday as a number (Saturday=6) without changing to the second-based POSIXlt.Presuppose
@OscardeLeón from ?strptime strptime converts character vectors to class "POSIXlt": its input x is first converted by as.character.Wherefrom
@geektrader you are quite right. thanks, and sorry for the misleading comment.Presuppose

© 2022 - 2025 — McMap. All rights reserved.