For a project, I’ve created a type based on Int which throws an error whenever the program tries to use a value beyond limits ([0..127] in my case). The code below does this and it works for me.
Is it possible in Haskell to create a second bounded type (say [0..255] for example) without duplicating this code ?
Thanks for your answers
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Minitel.Type.MNatural (MNat, mnat, fromMNat) where
-- | The MNat type. The constructor is hidden.
newtype MNat = MakeMNat Int deriving (Real, Eq, Ord, Show)
-- | MNat is a bounded type
instance Bounded MNat where
minBound = MakeMNat 0
maxBound = MakeMNat 127
-- | Converts an Int into an MNat
mnat :: Int -> MNat
mnat x | loLimit <= x && x <= hiLimit = MakeMNat x
| otherwise = error "Number out of bounds"
where loLimit = fromIntegral (minBound :: MNat)
hiLimit = fromIntegral (maxBound :: MNat)
-- | Converts an MNat into an Int
fromMNat :: MNat -> Int
fromMNat (MakeMNat i) = i
-- | Converts an Int binary function returning Int to a MNat binary function
-- returning an MNat
mfnat :: (Int -> Int) -> (MNat -> MNat)
mfnat f = mnat . f . fromMNat
mfnat2 :: (Int -> Int -> Int) -> (MNat -> MNat -> MNat)
mfnat2 f x y = mnat $ f (fromMNat x) (fromMNat y)
-- | You can do additions, substractions and multiplication with MNat
instance Num MNat where
fromInteger = mnat . fromIntegral
(+) = mfnat2 (+)
(-) = mfnat2 (-)
(*) = mfnat2 (*)
abs = mfnat abs
signum = mfnat signum
-- | Allows to use toInteger with MNat
instance Integral MNat where
quotRem x y = (fromInteger $ quot x' y', fromInteger $ rem x' y')
where (x', y') = (toInteger x, toInteger y)
toInteger = toInteger . fromMNat
-- | Allows to generate lists
instance Enum MNat where
toEnum = mnat
fromEnum = fromMNat
Note:
- performance is not a matter here