In order to make my model simulation's in Modelica run faster am asking the following quesion : What does impact simulation runtime in Modelica ?
i will aprecicate any help possible.
In order to make my model simulation's in Modelica run faster am asking the following quesion : What does impact simulation runtime in Modelica ?
i will aprecicate any help possible.
Edit: More details can be consulted from my book "Modelica by Application -- Power Systems" (URL)
What does impact the runtime performance?
I. Applied compilation techniques
Naturally, object-oriented Modelica models, even trivial ones, would correspond to a large-scale system of equations. Modelica simulation environments would usually optimize such generated models:
Thus, the runtime performance would be influenced by the underlying Modelica compiler and how far does it exploit equation-based compiler methods. Usually some extra settings need to be activated to exploit all possible kind of such techniques. Digging the documentation to enable such settings is needed.
II. The nature of the model
The nature of the model would influence the runtime performance, particularly:
III The choice of the solver
The mentioned characteristics of a given model would typically influence the ideal choice of the solver. The solver can largely influence the runtime performance (and accuracy). A strategy for solver choice could be made in the following order:
For a non-stiff weakly nonlinear model, the ideal choice would be an explicit method, e.g. Single-step Runga-Kutta or Multi-step Adam-Bashforth of higher order. If accuracy is less significant, one can attempt an explicit method of a lower order which would executes faster. Naturally, increasing the solver error tolerance would also speed-up the simulation.
However, it could happen, particularly for large-scale systems, that numerical stability could be more difficult to guarantee. Then, smaller solver step-sizes (and/or smaller error tolerance) for explicit solvers should be attempted. In this case, an implicit solver with larger error tolerance can be comparable with an explicit solver with a smaller tolerance.
Actually, it is wise to try both methods, comparing the accuracy of the results, and figuring out if explicit methods produce comparably accurate results. However, as a warning this would be just a heuristic, since the system does not necessarily have the same behavior over the entire space of admissible parameter values.
For increasing nonlinearity of the model, the choice would tend more towards modern solvers making use of variable step-size techniques. Here I would start with implicit variable-step Runga-Kutta (i.e. single-step) and/or the implicit variable-step multi-step methods, Adams–Moulton. For both of these classes, one can enlarge the solver tolerance and/or lower the solver error order and figure out if the simulation produces comparably accurate solutions (but with faster runtime).
Implementations of the previous classes of methods are usually less conservative with error control, and therefore, for increasing stiffness of the model or badly scalable models, the choice would tend more towards modern solvers implementing so-called numerically more stable backward differentiation formula (BDF), s.a. DASSL, CVODE, IDA. These solvers (can) also make use of the s.c. Jacobian of the system for adaptive step-size control.
A modern solver like LSODAR that switches between explicit and implicit solvers and also perform automatic error order control (switching between different orders) is a good choice if one does not know that much information about the behavior of the model. May be some Modelica environments have an advanced solver making use of automatic switching. However, if one knows the behavior of the model in advance, it is also wise to use other suggested methods since LSODAR may not perform the most optimal switching when needed.
x. ...
The comparisons between solvers from classes 3,4 and 5 are not straightforward to judge and it depends also on whether the system is continuous or hybrid, i.e. the underlying root-finding algorithms.
Usually DASSL could be slower as it is more conservative with step-size/error control. So it seems that IDA and others are faster. Some published works exist that can give some intuitions regarding such comparisons. It would be nice to have a Modelica library including all possible types of models and running all possible benchmarks w.r.t. accuracy and runtime to draw some more solver/model specific conclusions. A library that could be used and extended for such a purpose is the ScalableTestSuite Modelica library.
IV. Advanced aspects
There have been some published works in the Modelica community regarding making use of sparse solvers to exploit the expected sparsity of the Jacobian. If such a feature is provided by the simulation environment, this would usually significantly improve the runtime performance of large-scale models.
For models with massive number of events, numerical integration in the standard way can be extremely inefficient. Particularly challenging is when an event is triggered, other sets of state-events could be further triggered and a queue of state-events should be evaluated. The root-finding algorithm could further trigger other events and the solver could be hanging on in a s.c. chattering situation. There are advanced strategies for such situations, s.c. sliding mode, however I am not sure how far Modelica simulation environments are handing this issue.
One set of suggested solutions (also for systems with high degree of stiffness) is to employ so called QSS (quantized state system) methods. This would be significantly beneficial particularly for models that can not be solved using explicit solvers. There are both explicit and implicit QSS methods. There have been also other worth-to-try numerical integration strategies where only subsets of the entire equation system is evaluated when approximating a state event. Here I am not sure about availability of such solvers.
Some simulation environments differentiate between two simulation modes which can influence the simulation runtime: the ODE Mode and DAE Mode. In the first mode, the system is reduced to an ODE system with potentially additional cascaded blocks of nonlinear equation systems. In the DAE mode, the system is reduced to a DAE system of index one. The former mode would be beneficial for dense systems exhibiting such large cascaded blocks of nonlinear equations to be solved using s.c. Tearing methods instead of numerical integration. The DAE mode would be beneficial for large-scale sparse systems solved using sparse solvers. I think the ODE mode is usually activated by choosing CVODE or LSODAR while DAE mode is activated by choosing IDA or DASSL. But digging the documentation here and there is also recommended.
There are also some published works regarding so called multirate numerical integration solvers. Here, in each numerical integration step, only the numerically-significant portion of the equation system and not the entire equation system is integrated. Hence, this is significantly beneficial for large-scale stiff systems.
x. ...
V. Parallelization
Obviously, making use of multicore / GPUs for executing numerical integration in parallel, among other approaches for applying parallelization can speed-up computations.
VI. quite very advanced topics
In order to pay attention at some excellent research attempts some of which can be exploited for speeding up the simulation runtime performance of large-scale (loosely-coupled) hybrid networked models, I am listing this here as well. Speed-up can be obtained by making use of hybrid paradigms, agent-based modeling paradigm and/or multimode paradigm. The idea behind is that it is possible to describe a loosely coupled system in several smaller subsystems and conduct the communication among subsystems only when necessary. This can be beneficial and the reasons can be traced by searching for relevant publications. There have been some excellent work in some of the mentioned directions, and it is worth to continue them where they have stopped if this is the case.
Remark: Any of the mentioned solvers is not necessarily present in all possible Modelica simulation environments. If a solver is not provided as a choice, one would still be able to produce an FMU-ME (Functional mockup unit for model exchange) and write code that numerically integrate this FMU with a desired solver.
Warning: Some of the above aspects are based on personal experiences for a particular type of models and are not necessarily true for all model types.
Few suggested reading and I am definitely missing a lot of key publications:
© 2022 - 2024 — McMap. All rights reserved.