I'm trying to outline an algorithm to determine if my array is a minimum heap. Is there any documentation out there that could help me with this? I found a function for it on Apache's website, but it doesn't show exactly how the function works; just that there exists a function (BinaryHeap(boolean isMinHeap)).
Algorithm for checking if an Array with n-elements is a minimum heap
The Wikipedia article should help you.
Here are some questions to get you thinking about the solution:
- What must be true about the root of a heap, assuming the heap is a min heap?
- If the root of the heap satisfies the min heap property, how do you ensure that the subtrees of the root also hold the property?
- What if the root of the tree has no children? Is it a min heap?
I think this will work !
bool checkminheap(int arr[],root)
{
if(root>=sizeof(arr)/sizeof(arr[0])-1)
return 1;
if(arr[root]>arr[2*root] || arr[root]>arr[2*root+1]) //check root is the smallest element
return 0;
if(!checkminheap(arr,2*root))//check leftsubtree
return 0;
if(!checkminheap(arr,2*root+1))//check rightsubtree
return 0;
return 1;
}
Adding a verbose solution with java generics support, it is relatively easier to follow.
public static <T extends Comparable<T>> boolean isMinHeap(T arr[], int rootIndex) {
boolean isMaxH = true;
int lChild = 2 * rootIndex + 1;
int rChild = 2 * rootIndex + 2;
// Nothing to compare here, as lChild itself is larger then arr length.
if (lChild >= arr.length) {
return true;
}
if (arr[rootIndex].compareTo(arr[lChild]) > 0) {
return false;
} else {
isMaxH = isMaxH && isMinHeap(arr, lChild);
}
// rChild comparison not needed, return the current state of this root.
if (rChild >= arr.length) {
return isMaxH;
}
if (arr[rootIndex].compareTo(arr[rChild]) > 0) {
return false;
} else {
isMaxH = isMaxH && isMinHeap(arr, rChild);
}
return isMaxH;
}
© 2022 - 2024 — McMap. All rights reserved.