As suggested by John Rivers, you can use a monadic style to represent
"effectful" computation in a way that hides the linear constraint in
the effect API. Below is one example where a type ('a, 'st) t
is
used to represent computation using a file handle (whose identity is
implicit/unspoken to guarantee that it cannot be duplicated), will
product a result of type 'a
and leave the file handle in the state
'st
(a phantom type being either "open" or "close"). You have to use
the run
of the monad¹ to actually do anything, and its type ensure
that the file handles are correctly closed after use.
module File : sig
type ('a, 'st) t
type open_st = Open
type close_st = Close
val bind : ('a, 's1) t -> ('a -> ('b, 's2) t) -> ('b, 's2) t
val open_ : string -> (unit, open_st) t
val read : (string, open_st) t
val close : (unit, close_st) t
val run : ('a, close_st) t -> 'a
end = struct
type ('a, 'st) t = unit -> 'a
type open_st = Open
type close_st = Close
let run m = m ()
let bind m f = fun () ->
let x = run m in
run (f x)
let close = fun () ->
print_endline "[lib] close"
let read = fun () ->
let result = "toto" in
print_endline ("[lib] read " ^ result);
result
let open_ path = fun () ->
print_endline ("[lib] open " ^ path)
end
let test =
let open File in
let (>>=) = bind in
run begin
open_ "/tmp/foo" >>= fun () ->
read >>= fun content ->
print_endline ("[user] read " ^ content);
close
end
(* starting with OCaml 4.13, you can use binding operators:
( let* ) instead of ( >>= ) *)
let test =
let open File in
let ( let* ) = bind in
run begin
let* () = open_ "/tmp/foo" in
let* content = read in
print_endline ("[user] read " ^ content);
close
end
Of course, this is only meant to give you a taste of the style of
API. For more serious uses, see Oleg's monadic
regions examples.
You may also be interested in the research programming language
Mezzo, which aims to
be a variant of ML with finer-grained control of state (and related
effectful patterns) through a linear typing discipline with separated
resources. Note that it is only a research experiment for now, not
actually aimed at users. ATS is also relevant,
though finally less ML-like. Rust may actually be a reasonable
"practical" counterpart to these experiments.
¹: it is actually not a monad because it has no return
/unit
combinator, but the point is to force type-controlled sequencing as the monadic bind
operator does. It could have a map
, though.