I need to select half of a dataframe using the groupby
, where the size of each group is unknown and may vary across groups. For example:
index summary participant_id
0 130599 17.0 13
1 130601 18.0 13
2 130603 16.0 13
3 130605 15.0 13
4 130607 15.0 13
5 130609 16.0 13
6 130611 17.0 13
7 130613 15.0 13
8 130615 17.0 13
9 130617 17.0 13
10 86789 12.0 14
11 86791 8.0 14
12 86793 21.0 14
13 86795 19.0 14
14 86797 20.0 14
15 86799 9.0 14
16 86801 10.0 14
20 107370 1.0 15
21 107372 2.0 15
22 107374 2.0 15
23 107376 4.0 15
24 107378 4.0 15
25 107380 7.0 15
26 107382 6.0 15
27 107597 NaN 15
28 107384 14.0 15
The size of groups from groupyby('participant_id')
are 10, 7, 9 for participant_id
13, 14, 15 respectively. What I need is to take only the FIRST half (or floor(N/2)) of each group.
From my (very limited) experience with Pandas groupby
, it should be something like:
df.groupby('participant_id')[['summary','participant_id']].apply(lambda x: x[:k_i])
where k_i
is the half of the size of each group. Is there a simple solution to find the k_i
?
index
orsummary
, and then take the first half of each group? – Vestrymanindex
, by 'first' I mean take (if there are 10 lines in each group for example) only first 5 lines from each group. Does it help? – Recurvatedf.groupby('participant_id').apply(lambda x: x[:len(x)//2])
? – Petulia