Well, I've worked out exactly how to do this as concisely as possible. Below I explain how to achieve this and list all the code required :)
In order to allow touch interaction to select a pixel, first add a UITapGestureRecognizer
to your GLKViewController
subclass (assuming you want tap-to-select-pixel), with the following target method inside that class. You must make your GLKViewController
subclass a UIGestureRecognizerDelegate
:
@interface GLViewController : GLKViewController <GLKViewDelegate, UIGestureRecognizerDelegate>
After instantiating your gesture recognizer, add it to the view
property (which in GLKViewController
is actually a GLKView
):
// Inside GLKViewController subclass init/awakeFromNib:
[[self view] addGestureRecognizer:[self tapRecognizer]];
[[self tapRecognizer] setDelegate:self];
Set the target action for your gesture recognizer; you can do this when creating it using a particular init...
however I created mine using Storyboard (aka "the new Interface Builder in Xcode 4.2") and wired it up that way.
Anyway, here's my target action for the tap gesture recognizer:
-(IBAction)onTapGesture:(UIGestureRecognizer*)recognizer {
const CGPoint loc = [recognizer locationInView:[self view]];
[self pickAtX:loc.x Y:loc.y];
}
The pick method called in there is one I've defined inside my GLKViewController
subclass:
-(void)pickAtX:(GLuint)x Y:(GLuint)y {
GLKView *glkView = (GLKView*)[self view];
UIImage *snapshot = [glkView snapshot];
[snapshot pickPixelAtX:x Y:y];
}
This takes advantage of a handy new method snapshot
that Apple kindly included in GLKView
to produce a UIImage
from the underlying EAGLContext
.
What's important to note is a comment in the snapshot
API documentation, which states:
This method should be called whenever your application explicitly
needs the contents of the view; never attempt to directly read the
contents of the underlying framebuffer using OpenGL ES functions.
This gave me a clue as to why my earlier attempts to invoke glReadPixels
in attempts to access pixel data generated an EXC_BAD_ACCESS
, and the indicator that sent me down the right path instead.
You'll notice in my pickAtX:Y:
method defined a moment ago I call a pickPixelAtX:Y:
on the UIImage
. This is a method I added to UIImage
in a custom category:
@interface UIImage (NDBExtensions)
-(void)pickPixelAtX:(NSUInteger)x Y:(NSUInteger)y;
@end
Here is the implementation; it's the final code listing required. The code came from this question and has been amended according to the answer received there:
@implementation UIImage (NDBExtensions)
- (void)pickPixelAtX:(NSUInteger)x Y:(NSUInteger)y {
CGImageRef cgImage = [self CGImage];
size_t width = CGImageGetWidth(cgImage);
size_t height = CGImageGetHeight(cgImage);
if ((x < width) && (y < height))
{
CGDataProviderRef provider = CGImageGetDataProvider(cgImage);
CFDataRef bitmapData = CGDataProviderCopyData(provider);
const UInt8* data = CFDataGetBytePtr(bitmapData);
size_t offset = ((width * y) + x) * 4;
UInt8 b = data[offset+0];
UInt8 g = data[offset+1];
UInt8 r = data[offset+2];
UInt8 a = data[offset+3];
CFRelease(bitmapData);
NSLog(@"R:%i G:%i B:%i A:%i",r,g,b,a);
}
}
@end
I originally tried some related code found in an Apple API doc entitled: "Getting the pixel data from a CGImage context" which required 2 method definitions instead of this 1, but much more code is required and there is data of type void *
for which I was unable to implement the correct interpretation.
That's it! Add this code to your project, then upon tapping a pixel it will output it in the form:
R:24 G:46 B:244 A:255
Of course, you should write some means of extracting those RGBA int values (which will be in the range 0 - 255) and using them however you want. One approach is to return a UIColor
from the above method, instantiated like so:
UIColor *color = [UIColor colorWithRed:red/255.0f green:green/255.0f blue:blue/255.0f alpha:alpha/255.0f];