Problem Setup In statsmodels Quantile Regression problem, their Least Absolute Deviation summary output shows the Intercept. In that example, they are using a formula
from __future__ import print_function
import patsy
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from statsmodels.regression.quantile_regression import QuantReg
data = sm.datasets.engel.load_pandas().data
mod = smf.quantreg('foodexp ~ income', data)
res = mod.fit(q=.5)
print(res.summary())
QuantReg Regression Results
==============================================================================
Dep. Variable: foodexp Pseudo R-squared: 0.6206
Model: QuantReg Bandwidth: 64.51
Method: Least Squares Sparsity: 209.3
Date: Fri, 09 Oct 2015 No. Observations: 235
Time: 15:44:23 Df Residuals: 233
Df Model: 1
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 81.4823 14.634 5.568 0.000 52.649 110.315
income 0.5602 0.013 42.516 0.000 0.534 0.586
==============================================================================
The condition number is large, 2.38e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
The Question
How can I achieve a summary output with the Intercept
without using the statsmodels.formula.api as smf
formula approach?
mod = QuantReg(data['foodexp'], sm.add_constant(data.income))
– Taishataisho