I know it is an old question, but there are several things that everyone seems to be missing.
First, this is multiplication by 2: size << 1. This is multiplication by anything between 1 and 2: int(float(size) * x), where x is the number, the * is floating point math, and the processor has to run additional instructions for casting between float and int. In other words, at the machine level, doubling takes a single, very fast instruction to find the new size. Multiplying by something between 1 and 2 requires at least one instruction to cast size to a float, one instruction to multiply (which is float multiplication, so it probably takes at least twice as many cycles, if not 4 or even 8 times as many), and one instruction to cast back to int, and that assumes that your platform can perform float math on the general purpose registers, instead of requiring the use of special registers. In short, you should expect the math for each allocation to take at least 10 times as long as a simple left shift. If you are copying a lot of data during the reallocation though, this might not make much of a difference.
Second, and probably the big kicker: Everyone seems to assume that the memory that is being freed is both contiguous with itself, as well as contiguous with the newly allocated memory. Unless you are pre-allocating all of the memory yourself and then using it as a pool, this is almost certainly not the case. The OS might occasionally end up doing this, but most of the time, there is going to be enough free space fragmentation that any half decent memory management system will be able to find a small hole where your memory will just fit. Once you get to really bit chunks, you are more likely to end up with contiguous pieces, but by then, your allocations are big enough that you are not doing them frequently enough for it to matter anymore. In short, it is fun to imagine that using some ideal number will allow the most efficient use of free memory space, but in reality, it is not going to happen unless your program is running on bare metal (as in, there is no OS underneath it making all of the decisions).
My answer to the question? Nope, there is no ideal number. It is so application specific that no one really even tries. If your goal is ideal memory usage, you are pretty much out of luck. For performance, less frequent allocations are better, but if we went just with that, we could multiply by 4 or even 8! Of course, when Firefox jumps from using 1GB to 8GB in one shot, people are going to complain, so that does not even make sense. Here are some rules of thumb I would go by though:
If you cannot optimize memory usage, at least don't waste processor cycles. Multiplying by 2 is at least an order of magnitude faster than doing floating point math. It might not make a huge difference, but it will make some difference at least (especially early on, during the more frequent and smaller allocations).
Don't overthink it. If you just spent 4 hours trying to figure out how to do something that has already been done, you just wasted your time. Totally honestly, if there was a better option than *2, it would have been done in the C++ vector class (and many other places) decades ago.
Lastly, if you really want to optimize, don't sweat the small stuff. Now days, no one cares about 4KB of memory being wasted, unless they are working on embedded systems. When you get to 1GB of objects that are between 1MB and 10MB each, doubling is probably way too much (I mean, that is between 100 and 1,000 objects). If you can estimate expected expansion rate, you can level it out to a linear growth rate at a certain point. If you expect around 10 objects per minute, then growing at 5 to 10 object sizes per step (once every 30 seconds to a minute) is probably fine.
What it all comes down to is, don't over think it, optimize what you can, and customize to your application (and platform) if you must.