Indexes are basically used in OLTP systems to retrieve a specific or a small group of values. On the contrary, OLAP systems retrieve a large set of values and performs aggregation on the large set of values. Indexes would not be a right fit for OLAP systems. Instead it uses a secondary structure called zone maps with sort keys.
The indexes operate on B trees. The 'life without a btree' section in the below blog explains with examples how an index based out of btree affects OLAP workloads.
https://blog.chartio.com/blog/understanding-interleaved-sort-keys-in-amazon-redshift-part-1
The combination of columnar storage, compression codings, data distribution, compression, query compilations, optimization etc. provides the power to Redshift to be faster.
Implementing the above factors, reduces IO operations on Redshift and eventually providing better performance. To implement an efficient solution, it requires a great deal of knowledge on the above sections and as well as the on the queries that you would run on Amazon Redshift.
for eg.
Redshift supports Sort keys, Compound Sort keys and Interleaved Sort keys.
If your table structure is lineitem(orderid,linenumber,supplier,quantity,price,discount,tax,returnflat,shipdate).
If you select orderid as your sort key but if your queries are based on shipdate, Redshift will be operating efficiently.
If you have a composite sortkey on (orderid, shipdate) and if your query only on ship date, Redshift will not be operating efficiently.
If you have an interleaved soft key on (orderid, shipdate) and if your query
Redshift does not support materialized views but it easily allows you to create (temporary/permant) tables by running select queries on existing tables. It eventually duplicates data but at the required format to be executed for queries (similar to materialized view) The below blog gives your some information on the above approach.
https://www.periscopedata.com/blog/faster-redshift-queries-with-materialized-views-lifetime-daily-arpu.html
Redshift does fare well with other systems like Hive, Impala, Spark, BQ etc. during one of our recent benchmark frameworks