I wanted to help explain what's going on here.
An RSA "Public Key" consists of two numbers:
- the modulus (e.g. a 2,048 bit number)
- the exponent (usually 65,537)
Using your RSA public key as an example, the two numbers are:
- Modulus: 297,056,429,939,040,947,991,047,334,197,581,225,628,107,021,573,849,359,042,679,698,093,131,908,015,712,695,688,944,173,317,630,555,849,768,647,118,986,535,684,992,447,654,339,728,777,985,990,170,679,511,111,819,558,063,246,667,855,023,730,127,805,401,069,042,322,764,200,545,883,378,826,983,730,553,730,138,478,384,327,116,513,143,842,816,383,440,639,376,515,039,682,874,046,227,217,032,079,079,790,098,143,158,087,443,017,552,531,393,264,852,461,292,775,129,262,080,851,633,535,934,010,704,122,673,027,067,442,627,059,982,393,297,716,922,243,940,155,855,127,430,302,323,883,824,137,412,883,916,794,359,982,603,439,112,095,116,831,297,809,626,059,569,444,750,808,699,678,211,904,501,083,183,234,323,797,142,810,155,862,553,705,570,600,021,649,944,369,726,123,996,534,870,137,000,784,980,673,984,909,570,977,377,882,585,701
- Exponent: 65,537
The question then becomes how do we want to store these numbers in a computer. First we convert both to hexadecimal:
- Modulus: EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
- Exponent: 010001
RSA invented the first format
RSA invented a format first:
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
They chose to use the DER flavor of the ASN.1 binary encoding standard to represent the two numbers [1]:
SEQUENCE (2 elements)
INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
INTEGER (24 bit): 010001
The final binary encoding in ASN.1 is:
30 82 01 0A ;sequence (0x10A bytes long)
02 82 01 01 ;integer (0x101 bytes long)
00 EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
02 03 ;integer (3 bytes long)
010001
If you then run all those bytes together and Base64 encode it, you get:
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
RSA labs then said add a header and trailer:
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----
Five hyphens, and the words BEGIN RSA PUBLIC KEY
. That is your PEM DER ASN.1 PKCS#1 RSA Public key
- PEM: synonym for base64
- DER: a flavor of ASN.1 encoding
- ASN.1: the binary encoding scheme used
- PKCS#1: The formal specification that dictates representing a public key as structure that consists of modulus followed by an exponent
- RSA public key: the public key algorithm being used
Not just RSA
After that, other forms of public key cryptography came along:
- Diffie-Hellman
- Ellicptic Curve
When it came time to create a standard for how to represent the parameters of those encryption algorithms, people adopted a lot of the same ideas that RSA originally defined:
- use ASN.1 binary encoding
- base64 it
- wrap it with five hyphens
- and the words
BEGIN PUBLIC KEY
But rather than using:
-----BEGIN RSA PUBLIC KEY-----
-----BEGIN DH PUBLIC KEY-----
-----BEGIN EC PUBLIC KEY-----
They decided instead to include the Object Identifier (OID) of what is to follow. In the case of an RSA public key, that is:
- RSA PKCS#1:
1.2.840.113549.1.1.1
So for RSA public key it was essentially:
public struct RSAPublicKey {
INTEGER modulus,
INTEGER publicExponent
}
Now they created SubjectPublicKeyInfo which is basically:
public struct SubjectPublicKeyInfo {
AlgorithmIdentifier algorithm,
RSAPublicKey subjectPublicKey
}
In actual DER ASN.1 definition is:
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm ::= SEQUENCE {
algorithm OBJECT IDENTIFIER, -- 1.2.840.113549.1.1.1 rsaEncryption (PKCS#1 1)
parameters ANY DEFINED BY algorithm OPTIONAL },
subjectPublicKey BIT STRING {
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
}
That gives you an ASN.1 of:
SEQUENCE (2 elements)
SEQUENCE (2 elements)
OBJECT IDENTIFIER 1.2.840.113549.1.1.1
NULL
BIT STRING (1 element)
SEQUENCE (2 elements)
INTEGER (2048 bit): EB506399F5C612F5A67A09C1192B92FAB53DB28520D859CE0EF6B7D83D40AA1C1DCE2C0720D15A0F531595CAD81BA5D129F91CC6769719F1435872C4BCD0521150A0263B470066489B918BFCA03CE8A0E9FC2C0314C4B096EA30717C03C28CA29E678E63D78ACA1E9A63BDB1261EE7A0B041AB53746D68B57B68BEF37B71382838C95DA8557841A3CA58109F0B4F77A5E929B1A25DC2D6814C55DC0F81CD2F4E5DB95EE70C706FC02C4FCA358EA9A82D8043A47611195580F89458E3DAB5592DEFE06CDE1E516A6C61ED78C13977AE9660A9192CA75CD72967FD3AFAFA1F1A2FF6325A5064D847028F1E6B2329E8572F36E708A549DDA355FC74A32FDD8DBA65
INTEGER (24 bit): 010001
The final binary encoding in ASN.1 is:
30 82 01 22 ;SEQUENCE (0x122 bytes = 290 bytes)
| 30 0D ;SEQUENCE (0x0d bytes = 13 bytes)
| | 06 09 ;OBJECT IDENTIFIER (0x09 = 9 bytes)
| | 2A 86 48 86
| | F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
| | 05 00 ;NULL (0 bytes)
| 03 82 01 0F 00 ;BIT STRING (0x10f = 271 bytes)
| | 30 82 01 0A ;SEQUENCE (0x10a = 266 bytes)
| | | 02 82 01 01 ;INTEGER (0x101 = 257 bytes)
| | | | 00 ;leading zero of INTEGER
| | | | EB 50 63 99 F5 C6 12 F5 A6 7A 09 C1 19 2B 92 FA
| | | | B5 3D B2 85 20 D8 59 CE 0E F6 B7 D8 3D 40 AA 1C
| | | | 1D CE 2C 07 20 D1 5A 0F 53 15 95 CA D8 1B A5 D1
| | | | 29 F9 1C C6 76 97 19 F1 43 58 72 C4 BC D0 52 11
| | | | 50 A0 26 3B 47 00 66 48 9B 91 8B FC A0 3C E8 A0
| | | | E9 FC 2C 03 14 C4 B0 96 EA 30 71 7C 03 C2 8C A2
| | | | 9E 67 8E 63 D7 8A CA 1E 9A 63 BD B1 26 1E E7 A0
| | | | B0 41 AB 53 74 6D 68 B5 7B 68 BE F3 7B 71 38 28
| | | | 38 C9 5D A8 55 78 41 A3 CA 58 10 9F 0B 4F 77 A5
| | | | E9 29 B1 A2 5D C2 D6 81 4C 55 DC 0F 81 CD 2F 4E
| | | | 5D B9 5E E7 0C 70 6F C0 2C 4F CA 35 8E A9 A8 2D
| | | | 80 43 A4 76 11 19 55 80 F8 94 58 E3 DA B5 59 2D
| | | | EF E0 6C DE 1E 51 6A 6C 61 ED 78 C1 39 77 AE 96
| | | | 60 A9 19 2C A7 5C D7 29 67 FD 3A FA FA 1F 1A 2F
| | | | F6 32 5A 50 64 D8 47 02 8F 1E 6B 23 29 E8 57 2F
| | | | 36 E7 08 A5 49 DD A3 55 FC 74 A3 2F DD 8D BA 65
| | | 02 03 ;INTEGER (03 = 3 bytes)
| | | | 010001
And as before, you take all those bytes, Base64 encode them, you end up with your second example:
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
Add the slightly different header and trailer, and you get:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA61BjmfXGEvWmegnBGSuS
+rU9soUg2FnODva32D1AqhwdziwHINFaD1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBS
EVCgJjtHAGZIm5GL/KA86KDp/CwDFMSwluowcXwDwoyinmeOY9eKyh6aY72xJh7n
oLBBq1N0bWi1e2i+83txOCg4yV2oVXhBo8pYEJ8LT3el6Smxol3C1oFMVdwPgc0v
Tl25XucMcG/ALE/KNY6pqC2AQ6R2ERlVgPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeu
lmCpGSynXNcpZ/06+vofGi/2MlpQZNhHAo8eayMp6FcvNucIpUndo1X8dKMv3Y26
ZQIDAQAB
-----END PUBLIC KEY-----
And this is your X.509 SubjectPublicKeyInfo/OpenSSL PEM public key [2].
Do it right, or hack it
Now that you know that the encoding isn't magic, you can write all the pieces needed to parse out the RSA modulus and exponent. Or you can recognize that the first 24 bytes are just added new stuff on top of the original PKCS#1 standard
30 82 01 22 ;SEQUENCE (0x122 bytes = 290 bytes)
| 30 0D ;SEQUENCE (0x0d bytes = 13 bytes)
| | 06 09 ;OBJECT IDENTIFIER (0x09 = 9 bytes)
| | 2A 86 48 86
| | F7 0D 01 01 01 ;hex encoding of 1.2.840.113549.1.1
| | 05 00 ;NULL (0 bytes)
| 03 82 01 0F 00 ;BIT STRING (0x10f = 271 bytes)
| | ...
Those first 24-bytes are "new" stuff added:
30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00
And due to an extraordinary coincidence of fortune and good luck:
24 bytes happens to correspond exactly to 32 base64 encoded characters
Because in Base64: 3-bytes becomes four characters:
30 82 01 22 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05 00 03 82 01 0F 00
\______/ \______/ \______/ \______/ \______/ \______/ \______/ \______/
| | | | | | | |
MIIB IjAN Bgkq hkiG 9w0B AQEF AAOC AQ8A
That means if you take your second X.509 public key, the first 32 characters corresponds only to newly added stuff:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END PUBLIC KEY-----
If you remove the first 32 characters, and change it to BEGIN RSA PUBLIC KEY:
-----BEGIN RSA PUBLIC KEY-----
MIIBCgKCAQEA61BjmfXGEvWmegnBGSuS+rU9soUg2FnODva32D1AqhwdziwHINFa
D1MVlcrYG6XRKfkcxnaXGfFDWHLEvNBSEVCgJjtHAGZIm5GL/KA86KDp/CwDFMSw
luowcXwDwoyinmeOY9eKyh6aY72xJh7noLBBq1N0bWi1e2i+83txOCg4yV2oVXhB
o8pYEJ8LT3el6Smxol3C1oFMVdwPgc0vTl25XucMcG/ALE/KNY6pqC2AQ6R2ERlV
gPiUWOPatVkt7+Bs3h5Ramxh7XjBOXeulmCpGSynXNcpZ/06+vofGi/2MlpQZNhH
Ao8eayMp6FcvNucIpUndo1X8dKMv3Y26ZQIDAQAB
-----END RSA PUBLIC KEY-----
You have exactly what you wanted - the older RSA PUBLIC KEY
format.