Get p values or confidence intervals for nonnegative least square (nnls) fit coefficients [closed]
Asked Answered
A

2

7

I was looking for a way to do a linear regression under positive constraints, therefore came across the nnls approach. However I was wondering how I could get the same statistics from the nnls as the one provided by an lm object. More specifically the R-squared, the akaike information criterion, the p-values and confidence intervals.

library(arm)
library(nnls)


data = runif(100*4, min = -1, max = 1)
data = matrix(data, ncol = 4)
colnames(data) = c("y", "x1", "x2", "x3")
data = as.data.frame(data)
data$x1 = -data$y

A = as.matrix(data[,c("x1", "x2", "x3")])
b = data$y

test = nnls(A,b)
print(test)

Is there a way to reestimate in an lm framework, using offset and fixing the coefficient did not work... Is there a way to obtain these statistics ? Or another way to create an lm object with positivity constraints on the coefficients?

Thanks Romain.

Alcaeus answered 27/11, 2014 at 21:2 Comment(2)
Also added a solution using mle2 as well as based on the information matrix calculated on a log scale below! Comments welcome!Parsley
I'm voting to close this question as off-topic because this is mostly a statistics problem, it would fit better at one of the other sites in the network.Acidimetry
C
14

What you are proposing to do is a massively bad idea, so much so that I'm reluctant to show you how to do it. The reason is that for OLS, assuming the residuals are normally distributed with constant variance, then the parameter estimates follow a multivariate t-distribution and we can calculate confidence limits and p-values in the usual way.

However, if we perform NNLS on the same data, the residuals will not be normally ditributed, and the standard techniques for calculating p-values, etc. will produce garbage. There are methods for estimating confidence limits on the parameters of an NNLS fit (see this reference for instance), but they are approximate and usually rely on fairly restrictive assumptions about the dataset.

On the other hand, it would be nice if some of the more basic functions for an lm object, such as predict(...), coeff(...), residuals(...), etc. also worked for the result of an NNLS fit. So one way to acheive that is use nls(...): just because a model is linear in the parameters does not mean you cannot use non-linear least squares to find the parameters. nls(...) offers the option to set lower (and upper) limits on the parameters if you use the port algorithm.

set.seed(1)   # for reproducible example
data   <- as.data.frame(matrix(runif(1e4, min = -1, max = 1),nc=4))
colnames(data) <-c("y", "x1", "x2", "x3")
data$y <- with(data,-10*x1+x2 + rnorm(2500)) 

A <- as.matrix(data[,c("x1", "x2", "x3")])
b <- data$y
test <- nnls(A,b)
test
# Nonnegative least squares model
# x estimates: 0 1.142601 0 
# residual sum-of-squares: 88391
# reason terminated: The solution has been computed sucessfully.

fit <- nls(y~b.1*x1+b.2*x2+b.3*x3,data,algorithm="port",lower=c(0,0,0))
fit
# Nonlinear regression model
#   model: y ~ b.1 * x1 + b.2 * x2 + b.3 * x3
#    data: data
#   b.1   b.2   b.3 
# 0.000 1.143 0.000 
#  residual sum-of-squares: 88391

As you can see, the result of using nnls(...) and the result of using nls(...) with lower-c(0,0,0) are identical. But nls(...) produces an nls object, which supports (most of) the same methods as an lm object. So you can write precict(fit), coef(fit), residuals(fit), AIC(fit) etc. You can also write summary(fit) and confint(fit) but beware: the values you get are not meaningful!!!

To illustrate the point about the residuals, we compare the residuals for an OLS fit to this data, with the residuals for the NNLS fit.

par(mfrow=c(1,2),mar=c(3,4,1,1))
qqnorm(residuals(lm(y~.,data)),main="OLS"); qqline(residuals(lm(y~.,data)))
qqnorm(residuals(fit),main="NNLS"); qqline(residuals(fit)) 

In this dataset, the stochastic part of the variability in y is N(0,1) by design, so the residuals from the OLS fit (Q-Q plot on the left) are normal. But the residuals from the same dataset fitted using NNLS are not remotely normal. This is because the true dependance of y on x1 is -10, but the NNLS fit is forcing it to 0. Consequently, the proportion of very large residuals (both positive and negative) is much higher than would be expected from the normal distribution.

Chine answered 28/11, 2014 at 0:18 Comment(3)
Hello @jlhoward, I could not thank you enough for such a good answer. I always had the feeling there was a reason for different output between nnls/nls and lm, and your answer definitely point out the why of the situation. I will be very careful with the usage of nls and its result, and will most probably reconsider my model to make it fit in an unconstrained one. Again thank you for your kind help and for the time you took to properly answer.Alcaeus
Why would someone want to do this, instead of just dropping the variable? Result is the same is it not?Ingra
Also added a solution using mle2 as well as based on the information matrix calculated on a log scale below! Comments welcome!Parsley
P
0

I think you could use bbmle's mle2 function to optimize the least squares likelihood function and calculate 95% confidence intervals on the nonnegative nnls coefficients. Furthermore, you can take into account that your coefficients cannot go negative by optimizing the log of your coefficients, so that on a backtransformed scale they could never become negative.

Here is a numerical example illustrating this approach, here in the context of deconvoluting a superposition of gaussian-shaped chromatographic peaks with Gaussian noise on them : (any comments welcome)

First let's simulate some data :

require(Matrix)
n = 200
x = 1:n
npeaks = 20
set.seed(123)
u = sample(x, npeaks, replace=FALSE) # peak locations which later need to be estimated
peakhrange = c(10,1E3) # peak height range
h = 10^runif(npeaks, min=log10(min(peakhrange)), max=log10(max(peakhrange))) # simulated peak heights, to be estimated
a = rep(0, n) # locations of spikes of simulated spike train, need to be estimated
a[u] = h
gauspeak = function(x, u, w, h=1) h*exp(((x-u)^2)/(-2*(w^2))) # shape of single peak, assumed to be known
bM = do.call(cbind, lapply(1:n, function (u) gauspeak(x, u=u, w=5, h=1) )) # banded matrix with theoretical peak shape function used
y_nonoise = as.vector(bM %*% a) # noiseless simulated signal = linear convolution of spike train with peak shape function
y = y_nonoise + rnorm(n, mean=0, sd=100) # simulated signal with gaussian noise on it
y = pmax(y,0)
par(mfrow=c(1,1))
plot(y, type="l", ylab="Signal", xlab="x", main="Simulated spike train (red) to be estimated given known blur kernel & with Gaussian noise")
lines(a, type="h", col="red")

enter image description here

Let's now deconvolute the measured noisy signal y with a banded matrix containing shifted copied of the known gaussian shaped blur kernel bM (this is our covariate/design matrix).

First, let's deconvolute the signal with nonnegative least squares :

library(nnls)
library(microbenchmark)
microbenchmark(a_nnls <- nnls(A=bM,b=y)$x) # 5.5 ms
plot(x, y, type="l", main="Ground truth (red), nnls estimate (blue)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
yhat = as.vector(bM %*% a_nnls) # predicted values
residuals = (y-yhat)
nonzero = (a_nnls!=0) # nonzero coefficients
n = nrow(X)
p = sum(nonzero)+1 # nr of estimated parameters = nr of nonzero coefficients+estimated variance
variance = sum(residuals^2)/(n-p) # estimated variance = 8114.505

enter image description here

Now let's optimize the negative log-likelihood of our gaussian loss objective, and optimize the log of your coefficients so that on a backtransformed scale they can never be negative :

library(bbmle)
XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix, keeping only covariates with nonnegative nnls coefs
colnames(XM)=paste0("v",as.character(1:n))[nonzero]
yv=as.vector(y) # response
# negative log likelihood function for gaussian loss
NEGLL_gaus_logbetas <- function(logbetas, X=XM, y=yv, sd=sqrt(variance)) {
  -sum(stats::dnorm(x = y, mean = X %*% exp(logbetas), sd = sd, log = TRUE))
}  
parnames(NEGLL_gaus_logbetas) <- colnames(XM)
system.time(fit <- mle2(
  minuslogl = NEGLL_gaus_logbetas, 
  start = setNames(log(a_nnls[nonzero]+1E-10), colnames(XM)), # we initialise with nnls estimates
  vecpar = TRUE,
  optimizer = "nlminb"
)) # takes 0.86s
AIC(fit) # 2394.857
summary(fit) # now gives log(coefficients) (note that p values are 2 sided)
# Coefficients:
#       Estimate Std. Error z value     Pr(z)    
# v10    4.57339    2.28665  2.0000 0.0454962 *  
# v11    5.30521    1.10127  4.8173 1.455e-06 ***
# v27    3.36162    1.37185  2.4504 0.0142689 *  
# v38    3.08328   23.98324  0.1286 0.8977059    
# v39    3.88101   12.01675  0.3230 0.7467206    
# v48    5.63771    3.33932  1.6883 0.0913571 .  
# v49    4.07475   16.21209  0.2513 0.8015511    
# v58    3.77749   19.78448  0.1909 0.8485789    
# v59    6.28745    1.53541  4.0950 4.222e-05 ***
# v70    1.23613  222.34992  0.0056 0.9955643    
# v71    2.67320   54.28789  0.0492 0.9607271    
# v80    5.54908    1.12656  4.9257 8.407e-07 ***
# v86    5.96813    9.31872  0.6404 0.5218830    
# v87    4.27829   84.86010  0.0504 0.9597911    
# v88    4.83853   21.42043  0.2259 0.8212918    
# v107   6.11318    0.64794  9.4348 < 2.2e-16 ***
# v108   4.13673    4.85345  0.8523 0.3940316    
# v117   3.27223    1.86578  1.7538 0.0794627 .  
# v129   4.48811    2.82435  1.5891 0.1120434    
# v130   4.79551    2.04481  2.3452 0.0190165 *  
# v145   3.97314    0.60547  6.5620 5.308e-11 ***
# v157   5.49003    0.13670 40.1608 < 2.2e-16 ***
# v172   5.88622    1.65908  3.5479 0.0003884 ***
# v173   6.49017    1.08156  6.0008 1.964e-09 ***
# v181   6.79913    1.81802  3.7399 0.0001841 ***
# v182   5.43450    7.66955  0.7086 0.4785848    
# v188   1.51878  233.81977  0.0065 0.9948174    
# v189   5.06634    5.20058  0.9742 0.3299632    
# ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# -2 log L: 2338.857 
exp(confint(fit, method="quad"))  # backtransformed confidence intervals calculated via quadratic approximation (=Wald confidence intervals)
#              2.5 %        97.5 %
# v10   1.095964e+00  8.562480e+03
# v11   2.326040e+01  1.743531e+03
# v27   1.959787e+00  4.242829e+02
# v38   8.403942e-20  5.670507e+21
# v39   2.863032e-09  8.206810e+11
# v48   4.036402e-01  1.953696e+05
# v49   9.330044e-13  3.710221e+15
# v58   6.309090e-16  3.027742e+18
# v59   2.652533e+01  1.090313e+04
# v70  1.871739e-189 6.330566e+189
# v71   8.933534e-46  2.349031e+47
# v80   2.824905e+01  2.338118e+03
# v86   4.568985e-06  3.342200e+10
# v87   4.216892e-71  1.233336e+74
# v88   7.383119e-17  2.159994e+20
# v107  1.268806e+02  1.608602e+03
# v108  4.626990e-03  8.468795e+05
# v117  6.806996e-01  1.021572e+03
# v129  3.508065e-01  2.255556e+04
# v130  2.198449e+00  6.655952e+03
# v145  1.622306e+01  1.741383e+02
# v157  1.853224e+02  3.167003e+02
# v172  1.393601e+01  9.301732e+03
# v173  7.907170e+01  5.486191e+03
# v181  2.542890e+01  3.164652e+04
# v182  6.789470e-05  7.735850e+08
# v188 4.284006e-199 4.867958e+199
# v189  5.936664e-03  4.236704e+06
library(broom)
signlevels = tidy(fit)$p.value/2 # 1-sided p values for peak to be sign higher than 1
adjsignlevels = p.adjust(signlevels, method="fdr") # FDR corrected p values
a_nnlsbbmle = exp(coef(fit)) # exp to backtransform
max(a_nnls[nonzero]-a_nnlsbbmle) # -9.981704e-11, coefficients as expected almost the same
plot(x, y, type="l", main="Ground truth (red), nnls bbmle logcoeff estimate (blue & green, green=FDR p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(x[nonzero], -a_nnlsbbmle, type="h", col="blue", lwd=2)
lines(x[nonzero][(adjsignlevels<0.05)&(a_nnlsbbmle>1)], -a_nnlsbbmle[(adjsignlevels<0.05)&(a_nnlsbbmle>1)], 
      type="h", col="green", lwd=2)
sum((signlevels<0.05)&(a_nnlsbbmle>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((adjsignlevels<0.05)&(a_nnlsbbmle>1)) # 11 peaks significant after FDR correction

enter image description here

I haven't tried to compare the performance of this method relative to either nonparametric or parametric bootstrapping, but it's surely much faster.

I was also inclined to think that I should be able to calculate Wald confidence intervals for the nonnegative nnls coefficients based on the information matrix, calculated at a log transformed scale to enforce the nonnegativity constraints and evaluated at the nnls estimates. I think this goes like this :

XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix
posbetas = a_nnls[nonzero] # nonzero nnls coefficients
dispersion=sum(residuals^2)/(n-p) # estimated dispersion (variance in case of gaussian noise) (1 if noise were poisson or binomial)
information_matrix = t(XM) %*% XM # observed Fisher information matrix for nonzero coefs, ie negative of the 2nd derivative (Hessian) of the log likelihood at param estimates
scaled_information_matrix = (t(XM) %*% XM)*(1/dispersion) # information matrix scaled by 1/dispersion
# let's now calculate this scaled information matrix on a log transformed Y scale (cf. stat.psu.edu/~sesa/stat504/Lecture/lec2part2.pdf, slide 20 eqn 8 & Table 1) to take into account the nonnegativity constraints on the parameters
scaled_information_matrix_logscale = scaled_information_matrix/((1/posbetas)^2) # scaled information_matrix on transformed log scale=scaled information matrix/(PHI'(betas)^2) if PHI(beta)=log(beta)
vcov_logscale = solve(scaled_information_matrix_logscale) # scaled variance-covariance matrix of coefs on log scale ie of log(posbetas) # PS maybe figure out how to do this in better way using chol2inv & QR decomposition - in R unscaled covariance matrix is calculated as chol2inv(qr(XW_glm)$qr)
SEs_logscale = sqrt(diag(vcov_logscale)) # SEs of coefs on log scale ie of log(posbetas)
posbetas_LOWER95CL = exp(log(posbetas) - 1.96*SEs_logscale)
posbetas_UPPER95CL = exp(log(posbetas) + 1.96*SEs_logscale)
data.frame("2.5 %"=posbetas_LOWER95CL,"97.5 %"=posbetas_UPPER95CL,check.names=F)
#            2.5 %        97.5 %
# 1   1.095874e+00  8.563185e+03
# 2   2.325947e+01  1.743600e+03
# 3   1.959691e+00  4.243037e+02
# 4   8.397159e-20  5.675087e+21
# 5   2.861885e-09  8.210098e+11
# 6   4.036017e-01  1.953882e+05
# 7   9.325838e-13  3.711894e+15
# 8   6.306894e-16  3.028796e+18
# 9   2.652467e+01  1.090340e+04
# 10 1.870702e-189 6.334074e+189
# 11  8.932335e-46  2.349347e+47
# 12  2.824872e+01  2.338145e+03
# 13  4.568282e-06  3.342714e+10
# 14  4.210592e-71  1.235182e+74
# 15  7.380152e-17  2.160863e+20
# 16  1.268778e+02  1.608639e+03
# 17  4.626207e-03  8.470228e+05
# 18  6.806543e-01  1.021640e+03
# 19  3.507709e-01  2.255786e+04
# 20  2.198287e+00  6.656441e+03
# 21  1.622270e+01  1.741421e+02
# 22  1.853214e+02  3.167018e+02
# 23  1.393520e+01  9.302273e+03
# 24  7.906871e+01  5.486398e+03
# 25  2.542730e+01  3.164851e+04
# 26  6.787667e-05  7.737904e+08
# 27 4.249153e-199 4.907886e+199
# 28  5.935583e-03  4.237476e+06
z_logscale = log(posbetas)/SEs_logscale # z values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0) 
pvals = pnorm(z_logscale, lower.tail=FALSE) # one-sided p values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0)
pvals.adj = p.adjust(pvals, method="fdr") # FDR corrected p values

plot(x, y, type="l", main="Ground truth (red), nnls estimates (blue & green, green=FDR Wald p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
lines(x[nonzero][pvals.adj<0.05], -a_nnls[nonzero][pvals.adj<0.05], 
      type="h", col="green", lwd=2)
sum((pvals<0.05)&(posbetas>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((pvals.adj<0.05)&(posbetas>1)) # 11 peaks significantly higher than 1 after FDR correction

enter image description here

The results of these calculations and the ones returned by mle2 are nearly identical (but much faster), so I think this is right, and would correspond that what we were implicitly doing with mle2...

Just refitting the covariates with positive coefficients in an nnls fit using a regular linear model fit btw does not work, since such a linear model fit would not take into account the nonnegativity constraints and so would result in nonsensical confidence intervals that could go negative. This paper "Exact post model selection inference for marginal screening" by Jason Lee & Jonathan Taylor also presents a method to do post-model selection inference on nonnegative nnls (or LASSO) coefficients and uses truncated Gaussian distributions for that. I haven't seen any openly available implementation of this method for nnls fits though - for LASSO fits there is the selectiveInference package that does something like that. If anyone would happen to have an implementation, please let me know!

Parsley answered 29/4, 2019 at 7:56 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.