What is a very efficient way of determining how many digits there are in an integer in C++?
Well, the most efficient way, presuming you know the size of the integer, would be a lookup. Should be faster than the much shorter logarithm based approach. If you don't care about counting the '-', remove the + 1.
#include <climits>
// generic solution
template <class T>
int numDigits(T number)
{
int digits = 0;
if (number < 0) digits = 1; // remove this line if '-' counts as a digit
while (number) {
number /= 10;
digits++;
}
return digits;
}
// partial specialization optimization for 64-bit numbers
template <>
int numDigits(int64_t x) {
if (x == INT64_MIN) return 19 + 1;
if (x < 0) return digits(-x) + 1;
if (x >= 10000000000) {
if (x >= 100000000000000) {
if (x >= 10000000000000000) {
if (x >= 100000000000000000) {
if (x >= 1000000000000000000)
return 19;
return 18;
}
return 17;
}
if (x >= 1000000000000000)
return 16;
return 15;
}
if (x >= 1000000000000) {
if (x >= 10000000000000)
return 14;
return 13;
}
if (x >= 100000000000)
return 12;
return 11;
}
if (x >= 100000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 1000000)
return 7;
return 6;
}
if (x >= 100) {
if (x >= 1000) {
if (x >= 10000)
return 5;
return 4;
}
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial specialization optimization for 32-bit numbers
template<>
int numDigits(int32_t x)
{
if (x == INT32_MIN) return 10 + 1;
if (x < 0) return numDigits(-x) + 1;
if (x >= 10000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 100000) {
if (x >= 1000000)
return 7;
return 6;
}
return 5;
}
if (x >= 100) {
if (x >= 1000)
return 4;
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial-specialization optimization for 8-bit numbers
template <>
int numDigits(char n)
{
// if you have the time, replace this with a static initialization to avoid
// the initial overhead & unnecessary branch
static char x[256] = {0};
if (x[0] == 0) {
for (char c = 1; c != 0; c++)
x[c] = numDigits((int32_t)c);
x[0] = 1;
}
return x[n];
}
if (number == 0) { return 1; }
to be consistent with the specializations. –
Unsteady (number == 0)
change "if (number < 0) digits = 1;"
to "if (number <= 0) digits = 1;"
. Or change "while" loop
to "do...while" loop
so "digits"
will be incremented once when (number == 0)
. –
Alongshore digits()
should be numDigits()
, and it returns 0
digits for the number 0
. I'd stay clear of it. –
Olden The simplest way is to do:
unsigned GetNumberOfDigits (unsigned i)
{
return i > 0 ? (int) log10 ((double) i) + 1 : 1;
}
log10 is defined in <cmath>
or <math.h>
. You'd need to profile this to see if it's faster than any of the others posted here. I'm not sure how robust this is with regards to float point precision. Also, the argument is unsigned as negative values and log don't really mix.
-fpfast
you could see usage of SSE instrinsics rather than x87, which yields less guarantee on the precision IIRC. but by default no problem. –
Doornail Perhaps I misunderstood the question but doesn't this do it?
int NumDigits(int x)
{
x = abs(x);
return (x < 10 ? 1 :
(x < 100 ? 2 :
(x < 1000 ? 3 :
(x < 10000 ? 4 :
(x < 100000 ? 5 :
(x < 1000000 ? 6 :
(x < 10000000 ? 7 :
(x < 100000000 ? 8 :
(x < 1000000000 ? 9 :
10)))))))));
}
x = abs(x)
gives extra weight here. –
Displace 1
. Since the functions under test didn't do the same thing for negative numbers, I removed negative numbers and made the type std::uint_fast32_t
in both functions. –
Rye int digits = 0; while (number != 0) { number /= 10; digits++; }
Note: "0" will have 0 digits! If you need 0 to appear to have 1 digit, use:
int digits = 0; do { number /= 10; digits++; } while (number != 0);
(Thanks Kevin Fegan)
In the end, use a profiler to know which of all the answers here will be faster on your machine...
convert to string and then use built-in functions
unsigned int i;
cout<< to_string(i).length()<<endl;
Practical joke: This is the most efficient way (number of digits is calculated at compile-time):
template <unsigned long long N, size_t base=10>
struct numberlength
{
enum { value = 1 + numberlength<N/base, base>::value };
};
template <size_t base>
struct numberlength<0, base>
{
enum { value = 0 };
};
May be useful to determine the width required for number field in formatting, input elements etc.
0
and also fails on base 1
:) and gives divide by zero errors if the base is given as 0
. It can be fixed though. Anyway I'm nitpicking over a very old post, so sorry, it's just that I think this needn't be a joke and could actually be useful. –
Strumpet See Bit Twiddling Hacks for a much shorter version of the answer you accepted. It also has the benefit of finding the answer sooner if your input is normally distributed, by checking the big constants first. (v >= 1000000000)
catches 76% of the values, so checking that first will on average be faster.
int x = 1000;
int numberOfDigits = x ? static_cast<int>(log10(abs(x))) + 1 : 1;
A previous poster suggested a loop that divides by 10. Since multiplies on modern machines are a lot faster, I'd recommend the following code instead:
int digits = 1, pten=10; while ( pten <= number ) { digits++; pten*=10; }
The ppc architecture has a bit counting instruction. With that, you can determine the log base 2 of a positive integer in a single instruction. For example, 32 bit would be:
#define log_2_32_ppc(x) (31-__cntlzw(x))
If you can handle a small margin of error on large values you can convert that to log base 10 with another few instructions:
#define log_10_estimate_32_ppc(x) (9-(((__cntlzw(x)*1233)+1545)>>12))
This is platform specific and slightly inaccurate, but also involves no branches, division or conversion to floating point. All depends on what you need.
I only know the ppc instructions off hand, but other architectures should have similar instructions.
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
double num;
int result;
cout<<"Enter a number to find the number of digits, not including decimal places: ";
cin>>num;
result = ((num<=1)? 1 : log10(num)+1);
cout<<"Number of digits "<<result<<endl;
return 0;
}
This is probably the simplest way of solving your problem, assuming you only care about digits before the decimal and assuming anything less than 10 is just 1 digit.
You can use this to calculate the number of digits on compile time:
C++20 solution:
template<std::integral auto num>
constexpr int number_of_digits = num >= -9 && num <= 9 ? 1 : 1 + number_of_digits<num / 10>;
Works for negative numbers, zero and positive numbers.
Note: to make it work with C++14 change "std::integral auto" to "long long".
Note: if you want the minus sign in negative numbers to also be counted, then change -9 to 0;
Usage example:
int k = number_of_digits<101>; // k = 3
The way this works is that a number is going to be divided by 10 recursively until it becomes a single digit, in which case we finish by adding +1 to the total sum.
If faster is more efficient, this is a improvement on andrei alexandrescu's improvement. His version was already faster than the naive way (dividing by 10 at every digit). The version below is constant time and faster at least on x86-64 and ARM for all sizes, but occupies twice as much binary code, so it is not as cache-friendly.
Benchmarks for this version vs alexandrescu's version on my PR on facebook folly.
Works on unsigned
, not signed
.
inline uint32_t digits10(uint64_t v) {
return 1
+ (std::uint32_t)(v>=10)
+ (std::uint32_t)(v>=100)
+ (std::uint32_t)(v>=1000)
+ (std::uint32_t)(v>=10000)
+ (std::uint32_t)(v>=100000)
+ (std::uint32_t)(v>=1000000)
+ (std::uint32_t)(v>=10000000)
+ (std::uint32_t)(v>=100000000)
+ (std::uint32_t)(v>=1000000000)
+ (std::uint32_t)(v>=10000000000ull)
+ (std::uint32_t)(v>=100000000000ull)
+ (std::uint32_t)(v>=1000000000000ull)
+ (std::uint32_t)(v>=10000000000000ull)
+ (std::uint32_t)(v>=100000000000000ull)
+ (std::uint32_t)(v>=1000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000ull)
+ (std::uint32_t)(v>=100000000000000000ull)
+ (std::uint32_t)(v>=1000000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000000ull);
}
I like Ira Baxter's answer. Here is a template variant that handles the various sizes and deals with the maximum integer values (updated to hoist the upper bound check out of the loop):
#include <boost/integer_traits.hpp>
template<typename T> T max_decimal()
{
T t = 1;
for (unsigned i = boost::integer_traits<T>::digits10; i; --i)
t *= 10;
return t;
}
template<typename T>
unsigned digits(T v)
{
if (v < 0) v = -v;
if (max_decimal<T>() <= v)
return boost::integer_traits<T>::digits10 + 1;
unsigned digits = 1;
T boundary = 10;
while (boundary <= v) {
boundary *= 10;
++digits;
}
return digits;
}
To actually get the improved performance from hoisting the additional test out of the loop, you need to specialise max_decimal() to return constants for each type on your platform. A sufficiently magic compiler could optimise the call to max_decimal() to a constant, but specialisation is better with most compilers today. As it stands, this version is probably slower because max_decimal costs more than the tests removed from the loop.
I'll leave all that as an exercise for the reader.
#include <stdint.h> // uint32_t [available since C99]
/// Determine the number of digits for a 32 bit integer.
/// - Uses at most 4 comparisons.
/// - (cX) 2014 [email protected]
/// - \see http://stackoverflow.com/questions/1489830/#27669966
/** #d == Number length vs Number of comparisons == #c
\code
#d | #c #d | #c
---+--- ---+---
10 | 4 5 | 4
9 | 4 4 | 4
8 | 3 3 | 3
7 | 3 2 | 3
6 | 3 1 | 3
\endcode
*/
unsigned NumDigits32bs(uint32_t x) {
return // Num-># Digits->[0-9] 32->bits bs->Binary Search
( x >= 100000u // [6-10] [1-5]
? // [6-10]
( x >= 10000000u // [8-10] [6-7]
? // [8-10]
( x >= 100000000u // [9-10] [8]
? // [9-10]
( x >= 1000000000u // [10] [9]
? 10
: 9
)
: 8
)
: // [6-7]
( x >= 1000000u // [7] [6]
? 7
: 6
)
)
: // [1-5]
( x >= 100u // [3-5] [1-2]
? // [3-5]
( x >= 1000u // [4-5] [3]
? // [4-5]
( x >= 10000u // [5] [4]
? 5
: 4
)
: 3
)
: // [1-2]
( x >= 10u // [2] [1]
? 2
: 1
)
)
);
}
long long num = 123456789;
int digit = 1;
int result = 1;
while (result != 0)
{
result = num / 10;
if (result != 0)
{
++digit;
}
num = result;
}
cout << "Your number has " << digit << "digits" << endl;
Use the best and efficient way of log10(n) approach which gives you the desired result in just logarithmic time.
For negative number abs() converts it into positive number and for the number 0, the if condition stops you from proceeding further and prints the output as 0.
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n; std::cin >> n;
if(n)
std::cout << floor(log10(abs(n))+1) << std::endl;
else
std::cout << 0 << std::endl;
return 0;
}
Here is neat trick that uses fact that intLog2
is easy and fast and that: log10(x) = log2(x)/log2(10)
. Rounding issue have to be taken into account.
constexpr int intPow(int base, int n) {
int result = 1;
while (n) {
if (n & 1 == 1)
result *= base;
base *= base;
n >>= 1;
}
return result;
}
constexpr int intLog2(int x) {
int result = -1;
while (x) {
x >>= 1;
++result;
}
return result;
}
constexpr int intLog10(int x) {
constexpr int powersOf10[]{1, 10, 100, 1000,
10000, 100000, 1000000, 10000000,
100000000, 1000000000};
auto aprox = (intLog2(x) + 1) * 1233 >> 12;
return aprox - (x < powersOf10[aprox]);
}
All is done on integers. No divisions, so should be quite fast, but lookup table is probably faster (maybe will provide benchmark for that).
intLog2
can be rewritten as return std::numeric_limits<int>::digits - std::countl_zero(static_cast<unsigned>(x));
–
Martinmas Yet another code snippet, doing basically the same as Vitali's but employs binary search. Powers array is lazy initialized once per unsigned type instance. Signed type overload takes care of minus sign.
#include <limits>
#include <type_traits>
#include <array>
template <class T>
size_t NumberOfDecPositions ( T v, typename std::enable_if<std::is_unsigned<T>::value>::type* = 0 )
{
typedef std::array<T,std::numeric_limits<T>::digits10+1> array_type;
static array_type powers_of_10;
if ( powers_of_10.front() == 0 )
{
T n = 1;
for ( T& i: powers_of_10 )
{
i = n;
n *= 10;
}
}
size_t l = 0, r = powers_of_10.size(), p;
while ( l+1 < r )
{
p = (l+r)/2;
if ( powers_of_10[p] <= v )
l = p;
else
r = p;
}
return l + 1;
};
template <class T>
size_t NumberOfDecPositions ( T v, typename std::enable_if<std::is_signed<T>::value>::type* = 0 )
{
typedef typename std::make_unsigned<T>::type unsigned_type;
if ( v < 0 )
return NumberOfDecPositions ( static_cast<unsigned_type>(-v) ) + 1;
else
return NumberOfDecPositions ( static_cast<unsigned_type>(v) );
}
If anybody cares of further optimization, please note that the first element of powers array is never used, and the l
appears with +1
2 times.
in case the number of digits AND the value of each digit position is needed use this:
int64_t = number, digitValue, digits = 0; // or "int" for 32bit
while (number != 0) {
digitValue = number % 10;
digits ++;
number /= 10;
}
digit
gives you the value at the number postition which is currently processed in the loop. for example for the number 1776 the digit value is:
6 in the 1st loop
7 in the 2nd loop
7 in the 3rd loop
1 in the 4th loop
C++11 update of preferred solution:
#include <limits>
#include <type_traits>
template <typename T>
typename std::enable_if<std::numeric_limits<T>::is_integer, unsigned int>::type
numberDigits(T value) {
unsigned int digits = 0;
if (value < 0) digits = 1;
while (value) {
value /= 10;
++digits;
}
return digits;
}
prevents template instantiation with double, et. al.
// Meta-program to calculate number of digits in (unsigned) 'N'.
template <unsigned long long N, unsigned base=10>
struct numberlength
{ // http://stackoverflow.com/questions/1489830/
enum { value = ( 1<=N && N<base ? 1 : 1+numberlength<N/base, base>::value ) };
};
template <unsigned base>
struct numberlength<0, base>
{
enum { value = 1 };
};
{
assert( (1 == numberlength<0,10>::value) );
}
assert( (1 == numberlength<1,10>::value) );
assert( (1 == numberlength<5,10>::value) );
assert( (1 == numberlength<9,10>::value) );
assert( (4 == numberlength<1000,10>::value) );
assert( (4 == numberlength<5000,10>::value) );
assert( (4 == numberlength<9999,10>::value) );
/// Determine the number of digits for a 64 bit integer.
/// - Uses at most 5 comparisons.
/// - (cX) 2014 [email protected]
/// - \see http://stackoverflow.com/questions/1489830/#27670035
/** #d == Number length vs Number of comparisons == #c
\code
#d | #c #d | #c #d | #c #d | #c
---+--- ---+--- ---+--- ---+---
20 | 5 15 | 5 10 | 5 5 | 5
19 | 5 14 | 5 9 | 5 4 | 5
18 | 4 13 | 4 8 | 4 3 | 4
17 | 4 12 | 4 7 | 4 2 | 4
16 | 4 11 | 4 6 | 4 1 | 4
\endcode
*/
unsigned NumDigits64bs(uint64_t x) {
return // Num-># Digits->[0-9] 64->bits bs->Binary Search
( x >= 10000000000ul // [11-20] [1-10]
?
( x >= 1000000000000000ul // [16-20] [11-15]
? // [16-20]
( x >= 100000000000000000ul // [18-20] [16-17]
? // [18-20]
( x >= 1000000000000000000ul // [19-20] [18]
? // [19-20]
( x >= 10000000000000000000ul // [20] [19]
? 20
: 19
)
: 18
)
: // [16-17]
( x >= 10000000000000000ul // [17] [16]
? 17
: 16
)
)
: // [11-15]
( x >= 1000000000000ul // [13-15] [11-12]
? // [13-15]
( x >= 10000000000000ul // [14-15] [13]
? // [14-15]
( x >= 100000000000000ul // [15] [14]
? 15
: 14
)
: 13
)
: // [11-12]
( x >= 100000000000ul // [12] [11]
? 12
: 11
)
)
)
: // [1-10]
( x >= 100000ul // [6-10] [1-5]
? // [6-10]
( x >= 10000000ul // [8-10] [6-7]
? // [8-10]
( x >= 100000000ul // [9-10] [8]
? // [9-10]
( x >= 1000000000ul // [10] [9]
? 10
: 9
)
: 8
)
: // [6-7]
( x >= 1000000ul // [7] [6]
? 7
: 6
)
)
: // [1-5]
( x >= 100ul // [3-5] [1-2]
? // [3-5]
( x >= 1000ul // [4-5] [3]
? // [4-5]
( x >= 10000ul // [5] [4]
? 5
: 4
)
: 3
)
: // [1-2]
( x >= 10ul // [2] [1]
? 2
: 1
)
)
)
);
}
for integer 'X' you want to know the number of digits , alright without using any loop , this solution act in one formula in one line only so this is the most optimal solution i have ever seen to this problem .
int x = 1000 ;
cout<<numberOfDigits = 1+floor(log10(x))<<endl ;
double
? Or are you referring to some impossible integer input with INT_MAX decimal digits? Which would also fail every other answer here? –
Friend int numberOfDigits(int n){
if(n<=9){
return 1;
}
return 1 + numberOfDigits(n/10);
}
This is what i would do, if you want it for base 10.Its pretty fast and you prolly wont get a stack overflock buy counting integers
int num,dig_quant = 0;
cout<<"\n\n\t\t--Count the digits in Number--\n\n";
cout<<"Enter Number: ";
cin>>num;
for(int i = 1; i<=num; i*=10){
if(num / i > 0){
dig_quant += 1;
}
}
cout<<"\n"<<number<<" include "<<dig_quant<<" digit"
cout<<"\n\nGoodbye...\n\n";
I was working on a program that required me to check if the user correctly answered how many digits were in a number, so i had to develop a way to check the amount of digits in an integer. It ended up being a relatively easy thing to solve.
double check=0, exponent=1000;
while(check<=1)
{
check=number/pow(10, exponent);
exponent--;
}
exponent=exponent+2;
cout<<exponent<<endl;
This ended up being my answer which currently works with numbers with less than 10^1000 digits (can be changed by changing the value of exponent).
P.S. I know this answer is ten years late but I got here on 2020 so other people might use it.
You can use this recursive function, which calls itself while its argument is greater or equal to 10.
int numDigits(int n) {
return n >= 10 ? numDigits(n / 10) + 1 : 1;
}
Example usage:
#include <iostream>
int numDigits(int n) {
return n >= 10 ? numDigits(n / 10) + 1 : 1;
}
int main() {
int values[] = {0, 4, 10, 43, 789, 1500};
for (int n : values) {
std::cout << n << ": " << numDigits(n) << '\n';
}
return 0;
}
Output:
0: 1
4: 1
10: 2
43: 2
789: 3
1500: 4
template <typename type>
class number_of_decimal_digits {
const powers_and_max<type> mPowersAndMax;
public:
number_of_decimal_digits(){
}
inline size_t ndigits( type i) const {
if(i<0){
i += (i == std::numeric_limits<type>::min());
i=-i;
}
const type* begin = &*mPowersAndMax.begin();
const type* end = begin+mPowersAndMax.size();
return 1 + std::lower_bound(begin,end,i) - begin;
}
inline size_t string_ndigits(const type& i) const {
return (i<0) + ndigits(i);
}
inline size_t operator[](const type& i) const {
return string_ndigits(i);
}
};
where in powers_and_max
we have (10^n)-1
for all n
such that
(10^n) <
std::numeric_limits<type>::max()
and std::numeric_limits<type>::max()
in an array:
template <typename type>
struct powers_and_max : protected std::vector<type>{
typedef std::vector<type> super;
using super::const_iterator;
using super::size;
type& operator[](size_t i)const{return super::operator[](i)};
const_iterator begin()const {return super::begin();}
const_iterator end()const {return super::end();}
powers_and_max() {
const int size = (int)(log10(double(std::numeric_limits<type>::max())));
int j = 0;
type i = 10;
for( ; j<size ;++j){
push_back(i-1);//9,99,999,9999 etc;
i*=10;
}
ASSERT(back()<std::numeric_limits<type>::max());
push_back(std::numeric_limits<type>::max());
}
};
here's a simple test:
number_of_decimal_digits<int> ndd;
ASSERT(ndd[0]==1);
ASSERT(ndd[9]==1);
ASSERT(ndd[10]==2);
ASSERT(ndd[-10]==3);
ASSERT(ndd[-1]==2);
ASSERT(ndd[-9]==2);
ASSERT(ndd[1000000000]==10);
ASSERT(ndd[0x7fffffff]==10);
ASSERT(ndd[-1000000000]==11);
ASSERT(ndd[0x80000000]==11);
Of course any other implementation of an ordered set might be used for powers_and_max
and if there was knowledge that there would be clustering but no knowledge of where the cluster might be perhaps a self adjusting tree implementation might be best
effective way
int num;
int count = 0;
while(num)
{
num /= 10;
++count;
}
#include <iostream>
int main()
{
int num;
std::cin >> num;
std::cout << "number of digits for " << num << ": ";
int count = 0;
while(num)
{
num /= 10;
++count;
}
std::cout << count << '\n';
return 0;
}
int numberOfDigits(double number){
if(number < 0){
number*=-1;
}
int i=0;
while(number > pow(10, i))
i++;
cout << "This number has " << i << " digits" << endl;
return i;
}
This is my way to do that:
int digitcount(int n)
{
int count = 1;
int temp = n;
while (true)
{
temp /= 10;
if (temp != 0) ++count;
if (temp == 0) break;
}
return count;
}
Here's a different approach:
digits = sprintf(numArr, "%d", num); // where numArr is a char array
if (num < 0)
digits--;
This may not be efficient, just something different than what others suggested.
© 2022 - 2024 — McMap. All rights reserved.
Math.log10(value)+1
is the most efficient way on any measure. – Friend0
have? – Abscind