Think of it as a layer of buffering.
If you're familiar with the standard C calls like fopen
and fprintf
, you should already be aware of buffering happening within the C runtime library itself.
The way to flush those buffers is with fflush
which ensures that the information is handed from the C runtime library to the OS (or surrounding environment).
However, just because the OS has it, doesn't mean it's on the disk. It could get buffered within the OS as well.
That's what fsync
takes care of, ensuring that the stuff in the OS buffers is written physically to the disk.
You may typically see this sort of operation in logging libraries:
fprintf (myFileHandle, "something\n"); // output it
fflush (myFileHandle); // flush to OS
fsync (fileno (myFileHandle)); // flush to disk
fileno
is a function which gives you the underlying int
file descriptor for a given FILE*
file handle, and fsync
on the descriptor does the final level of flushing.
Now that is a relatively expensive operation since the disk write is usually considerably slower than in-memory transfers.
As well as logging libraries, one other use case may be useful for this behaviour. Let me see if I can remember what it was. Yes, that's it. Databases! Just like Berzerkely DB. Where you want to ensure the data is on the disk, a rather useful feature for meeting ACID requirements :-)