There are two separate things here:
- Requesting an ELF interpreter (ld.so) or not.
Like #!/bin/sh
but for binaries, runs before your _start
.
This is the difference between a static vs. dynamic executable.
- The list of dynamically linked libraries for ld.so to load happens to be empty.
This is apparently what ldd
calls "statically linked", i.e. that any libraries you might have linked at build time were static libraries.
Other tools like file
and readelf
give more information and use terminology that matches what you'd expect.
Your GCC is configured so -pie
is the default, and gcc doesn't make a static-pie for the special case of no dynamic libraries.
gcc -nostdlib
just makes a PIE that happens not to link to any libraries but is otherwise identical to a normal PIE, specifying an ELF interpreter.
ldd
confusingly calls this "statically linked".
file
: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2 ...
gcc -nostdlib -static
overrides the -pie
default and makes a true static executable.
file
: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked ...
gcc -nostdlib -no-pie
also chooses to make a static executable as an optimization for the case where there are no dynamic libraries at all. Since a non-PIE executable couldn't have been ASLRed anyway, this makes sense. Byte-for-byte identical to the -static
case.
gcc -nostdlib -static-pie
makes an ASLRable executable that doesn't need an ELF interpreter. GCC doesn't do this by default for gcc -pie -nostdlib
, unlike the no-pie case where it chooses to sidestep ld.so
when no dynamically-linked libraries are involved.
file
: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), statically linked ...
-static-pie
is obscure, rarely used, and older file
doesn't identify it as statically linked.
-nostdlib
doesn't imply -no-pie
or -static
, and -static-pie
has to be explicitly specified to get that.
gcc -static-pie
invokes ld -static -pie
, so ld
has to know what that means. Unlike with the non-PIE case where you don't have to ask for a dynamic executable explicitly, you just get one if you pass ld
any .so
libraries. I think that's why you happen to get a static executable from gcc -nostdlib -no-pie
- GCC doesn't have to do anything special, it's just ld
doing that optimization.
But ld
doesn't enable -static
implicitly when -pie
is specified, even when there are no shared libraries to link.
Details
Examples generated with gcc --version
gcc (Arch Linux 9.3.0-1) 9.3.0
ld --version
GNU ld (GNU Binutils) 2.34 (also readelf is binutils)
ldd --version
ldd (GNU libc) 2.31
file --version
file-5.38 - note that static-pie detection has changed in recent patches, with Ubuntu cherry-picking an unreleased patch. (Thanks @Joseph for the detective work) - this in 2019 detected dynamic = having a PT_INTERP to handle static-pie, but it was reverted to detect based on PT_DYNAMIC so shared libraries count as dynamic
. debian bug #948269. static-pie
is an obscure rarely-used feature.
GCC ends up running ld -pie exit.o
with a dynamic linker path specified, and no libraries. (And a boatload of other options to support possible LTO link-time optimization, but the keys here are -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie
. collect2
is just a wrapper around ld
.)
$ gcc -nostdlib exit.s -v # output manually line wrapped with \ for readability
...
COLLECT_GCC_OPTIONS='-nostdlib' '-v' '-mtune=generic' '-march=x86-64'
/usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0/collect2 \
-plugin /usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0/liblto_plugin.so \
-plugin-opt=/usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0/lto-wrapper \
-plugin-opt=-fresolution=/tmp/ccoNx1IR.res \
--build-id --eh-frame-hdr --hash-style=gnu \
-m elf_x86_64 -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie \
-L/usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0 \
-L/usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0/../../../../lib -L/lib/../lib \
-L/usr/lib/../lib \
-L/usr/lib/gcc/x86_64-pc-linux-gnu/9.3.0/../../.. \
/tmp/cctm2fSS.o
You get a dynamic PIE with no dependencies on other libraries. Running it still invokes the "ELF interpreter" /lib64/ld-linux-x86-64.so.2
on it which runs before jumping to your _start
. (Although the kernel has already mapped the executable's ELF segments to ASLRed virtual addresses, along with ld.so's text / data / bss).
file
and readelf are more descriptive.
PIE non-static executable from gcc -nostdlib
$ gcc -nostdlib exit.s -o exit-default
$ ls -l exit-default
-rwxr-xr-x 1 peter peter 13536 May 2 02:15 exit-default
$ ldd exit-default
statically linked
$ file exit-default
exit-default: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=05a4d1bdbc94d6f91cca1c9c26314e1aa227a3a5, not stripped
$ readelf -a exit-default
...
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x1000
...
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040
0x00000000000001f8 0x00000000000001f8 R 0x8
INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238
0x000000000000001c 0x000000000000001c R 0x1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x00000000000002b1 0x00000000000002b1 R 0x1000
LOAD 0x0000000000001000 0x0000000000001000 0x0000000000001000
0x0000000000000009 0x0000000000000009 R E 0x1000
... (the Read+Exec segment to be mapped at virt addr 0x1000 is where your text section was linked.)
If you strace it you can also see the differences:
$ gcc -nostdlib exit.s -o exit-default
$ strace ./exit-default
execve("./exit-default", ["./exit-default"], 0x7ffe1f526040 /* 51 vars */) = 0
brk(NULL) = 0x5617eb1e4000
arch_prctl(0x3001 /* ARCH_??? */, 0x7ffcea703380) = -1 EINVAL (Invalid argument)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f9ff5b3e000
arch_prctl(ARCH_SET_FS, 0x7f9ff5b3ea80) = 0
mprotect(0x5617eabac000, 4096, PROT_READ) = 0
exit(0) = ?
+++ exited with 0 +++
vs. -static
and -static-pie
the first instruction executed in user-space is your _start
(which you can also check with GDB using starti
).
$ strace ./exit-static-pie
execve("./exit-static-pie", ["./exit-static-pie"], 0x7ffcdac96dd0 /* 51 vars */) = 0
exit(0) = ?
+++ exited with 0 +++
gcc -nostdlib -static-pie
$ gcc -nostdlib -static-pie exit.s -o exit-static-pie
$ ls -l exit-static-pie
-rwxr-xr-x 1 peter peter 13440 May 2 02:18 exit-static-pie
peter@volta:/tmp$ ldd exit-static-pie
statically linked
peter@volta:/tmp$ file exit-static-pie
exit-static-pie: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), statically linked, BuildID[sha1]=daeb4a8f11bec1bb1aaa13cd48d24b5795af638e, not stripped
$ readelf -a exit-static-pie
...
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x1000
...
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000229 0x0000000000000229 R 0x1000
LOAD 0x0000000000001000 0x0000000000001000 0x0000000000001000
0x0000000000000009 0x0000000000000009 R E 0x1000
... (no Interp header, but still a read+exec text segment)
Notice that the addresses are still relative to the image base, leaving ASLR up to the kernel.
Surprisingly, ldd
doesn't say that it's not a dynamic executable. That might be a bug, or a side effect of some implementation detail.
gcc -nostdlib -static
traditional non-PIE old-school static executable
$ gcc -nostdlib -static exit.s -o exit-static
$ ls -l exit-static
-rwxr-xr-x 1 peter peter 4744 May 2 02:26 exit-static
peter@volta:/tmp$ ldd exit-static
not a dynamic executable
peter@volta:/tmp$ file exit-static
exit-static: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, BuildID[sha1]=1b03e3d05709b7288fe3006b4696fd0c11fb1cb2, not stripped
peter@volta:/tmp$ readelf -a exit-static
ELF Header:
...
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x401000
... (Note the absolute entry-point address nailed down at link time)
(And that the ELF type is EXEC, not DYN)
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x000000000000010c 0x000000000000010c R 0x1000
LOAD 0x0000000000001000 0x0000000000401000 0x0000000000401000
0x0000000000000009 0x0000000000000009 R E 0x1000
NOTE 0x00000000000000e8 0x00000000004000e8 0x00000000004000e8
0x0000000000000024 0x0000000000000024 R 0x4
Section to Segment mapping:
Segment Sections...
00 .note.gnu.build-id
01 .text
02 .note.gnu.build-id
...
Those are all the program headers; unlike pie / static-pie I'm not leaving any out, just other whole parts of the readelf -a
output.
Also note the absolute virtual addresses in the program headers that don't give the kernel a choice where in virtual address space to map the file. This is the difference between EXEC and DYN types of ELF objects. PIE executables are shared objects with an entry point, allowing us to get ASLR for the main executable. Actual EXEC executables have a link-time-chosen memory layout.
ldd
apparently only reports "not a dynamic executable" when both:
- no ELF interpreter (dynamic linker) path
- ELF type = EXEC