I was reading the Haskell Prelude and finding it pretty understandable, then I stumbled upon the exponention definition:
(^) :: (Num a, Integral b) => a -> b -> a
x ^ 0 = 1
x ^ n | n > 0 = f x (n-1) x
where f _ 0 y = y
f x n y = g x n where
g x n | even n = g (x*x) (n `quot` 2)
| otherwise = f x (n-1) (x*y)
_ ^ _ = error "Prelude.^: negative exponent"
I do not understand the need for two nested where
s.
What I understood so far:
(^) :: (Num a, Integral b) => a -> b -> a
The base must be a number and the exponent intege, ok.
x ^ 0 = 1
Base case, easy.
g x n | even n = g (x*x) (n `quot` 2)
| otherwise = f x (n-1) (x*y)
Exponention by squaring... kind of ... Why is the f
helper needed? Why are f
and g
given single letter names? Is it just optimization, am I missing something obvious?
_ ^ _ = error "Prelude.^: negative exponent"
N > 0 was checked before, N is negative if we arrived here, so error.
My implementation would be a direct translation to code of:
Function exp-by-squaring(x, n )
if n < 0 then return exp-by-squaring(1 / x, - n );
else if n = 0 then return 1; else if n = 1 then return x ;
else if n is even then return exp-by-squaring(x * x, n / 2);
else if n is odd then return x * exp-by-squaring(x * x, (n - 1) / 2).
Pseudocode from wikipedia.