Functions available for Tufte boxplots in R?
Asked Answered
U

5

18

I have some data that I've divided into enough groupings that standard boxplots look very crowded. Tufte has his own boxplots in which you basically drop all or half of box, like this:

tufte boxplots

Some sample data:

cw <- transform(ChickWeight, 
  Time = cut(ChickWeight$Time,4)
  )
cw$Chick <- as.factor( sample(LETTERS[seq(3)], nrow(cw), replace=TRUE) )
levels(cw$Diet) <- c("Low Fat","Hi Fat","Low Prot.","Hi Prot.")

I want a boxplot of weight for every Diet * Time * Chick grouping.

I had this problem come up years ago, and kludged together a solution using grid graphics, which I'll post in a bit. But in solving this new (and similar) problem I'm wondering if there's a stock way to do them rather than fixing my kludged together example.

As an aside, these seem to be amongst the less-beloved of Tufte's creations, but I really like them for densely displaying patterns of distributions across a large number groupings, and I'd use them more if there was a good function for them in ggplot2 or lattice.

Upwind answered 7/8, 2011 at 14:32 Comment(4)
You might want to first read "W. A. Stock and J. T. Behrens. Box, line, and midgap plots: Effects of display characteristics on the accuracy and bias of estimates of whisker length. Journal of Educational Statistics, 16(1): 1–20, 1991", which finds that Tukey's variation of the boxplot is inferior to the classic form.Cosma
@hadley: Will do. Thanks for the reference. I assume you mean Tufte's version, since Tukey's is the classic form?Upwind
Gah, yes, I meant Tufte's variation is inferior. Wish you could edit comments.Cosma
@hadley: Very cool paper. Thanks again for recommending it. I'd note, though, that their "line plot" (which shows results nearly identical to the classic boxplot) is much more akin to the second Tufte design, which is the one I've always preferred. There's also a concern about external validity, since undergraduates have almost certainly seen more Tukey than Tufte boxplots. But I'll exercise appropriate caution in using them willy-nilly :-).Upwind
D
15

You apparently wanted just a vertical version, so I took the panel.bwplot code, stripped out all the non-essentials such as the box and the cap, and set horizontal=FALSE in the arguments and created a panel.tuftebxp function. Also set the cex of the points at half of the default. There are still quite a few of options left that could be adjusted to your tastes. The "numeric" factor names for "Time" look sloppy but I figure the "proof of concept" is clear and you can clean up what is important to you:

panel.tuftebxp <- 
function (x, y, box.ratio = 1, box.width = box.ratio/(1 + box.ratio), horizontal=FALSE,
    pch = box.dot$pch, col = box.dot$col, 
    alpha = box.dot$alpha, cex = box.dot$cex, font = box.dot$font, 
    fontfamily = box.dot$fontfamily, fontface = box.dot$fontface, 
    fill = box.rectangle$fill, varwidth = FALSE, notch = FALSE, 
    notch.frac = 0.5, ..., levels.fos = if (horizontal) sort(unique(y)) else sort(unique(x)), 
    stats = boxplot.stats, coef = 1.5, do.out = TRUE, identifier = "bwplot") 
{
    if (all(is.na(x) | is.na(y))) 
        return()
    x <- as.numeric(x)
    y <- as.numeric(y)
    box.dot <- trellis.par.get("box.dot")
    box.rectangle <- trellis.par.get("box.rectangle")
    box.umbrella <- trellis.par.get("box.umbrella")
    plot.symbol <- trellis.par.get("plot.symbol")
    fontsize.points <- trellis.par.get("fontsize")$points
    cur.limits <- current.panel.limits()
    xscale <- cur.limits$xlim
    yscale <- cur.limits$ylim
    if (!notch) 
        notch.frac <- 0
    #removed horizontal code
     blist <- tapply(y, factor(x, levels = levels.fos), stats, 
            coef = coef, do.out = do.out)
        blist.stats <- t(sapply(blist, "[[", "stats"))
        blist.out <- lapply(blist, "[[", "out")
        blist.height <- box.width
        if (varwidth) {
            maxn <- max(table(x))
            blist.n <- sapply(blist, "[[", "n")
            blist.height <- sqrt(blist.n/maxn) * blist.height
        }
        blist.conf <- if (notch) 
            sapply(blist, "[[", "conf")
        else t(blist.stats[, c(2, 4), drop = FALSE])
        ybnd <- cbind(blist.stats[, 3], blist.conf[2, ], blist.stats[, 
            4], blist.stats[, 4], blist.conf[2, ], blist.stats[, 
            3], blist.conf[1, ], blist.stats[, 2], blist.stats[, 
            2], blist.conf[1, ], blist.stats[, 3])
        xleft <- levels.fos - blist.height/2
        xright <- levels.fos + blist.height/2
        xbnd <- cbind(xleft + notch.frac * blist.height/2, xleft, 
            xleft, xright, xright, xright - notch.frac * blist.height/2, 
            xright, xright, xleft, xleft, xleft + notch.frac * 
                blist.height/2)
        xs <- cbind(xbnd, NA_real_)
        ys <- cbind(ybnd, NA_real_)
        panel.segments(rep(levels.fos, 2), c(blist.stats[, 2], 
            blist.stats[, 4]), rep(levels.fos, 2), c(blist.stats[, 
            1], blist.stats[, 5]), col = box.umbrella$col, alpha = box.umbrella$alpha, 
            lwd = box.umbrella$lwd, lty = box.umbrella$lty, identifier = paste(identifier, 
                "whisker", sep = "."))

        if (all(pch == "|")) {
            mult <- if (notch) 
                1 - notch.frac
            else 1
            panel.segments(levels.fos - mult * blist.height/2, 
                blist.stats[, 3], levels.fos + mult * blist.height/2, 
                blist.stats[, 3], lwd = box.rectangle$lwd, lty = box.rectangle$lty, 
                col = box.rectangle$col, alpha = alpha, identifier = paste(identifier, 
                  "dot", sep = "."))
        }
        else {
            panel.points(x = levels.fos, y = blist.stats[, 3], 
                pch = pch, col = col, alpha = alpha, cex = cex, 
                 identifier = paste(identifier, 
                  "dot", sep = "."))
        }
        panel.points(x = rep(levels.fos, sapply(blist.out, length)), 
            y = unlist(blist.out), pch = plot.symbol$pch, col = plot.symbol$col, 
            alpha = plot.symbol$alpha, cex = plot.symbol$cex*0.5, 
            identifier = paste(identifier, "outlier", sep = "."))

}
bwplot(weight ~ Diet + Time + Chick, data=cw, panel= 
         function(x,y, ...) panel.tuftebxp(x=x,y=y,...))

enter image description here

Diphenylhydantoin answered 7/8, 2011 at 15:46 Comment(0)
S
19

Here is a solution without using any packages, just manipulating boxplot pars graphical parameters. My suggestion is closest to @DWin, but getting rid of colour and axes, and using just few lines of code. Both suggestions by @gsk3 and @Ramnath are very good, and much more advanced than mine, but if I may comment - they fail to address Tufte's main philosophy. If we would get rid of gray background, white 'prison bars' and unnecessary colours, all solutions above would gain in clarity, simplicity and right data-ink balance.

Credits should go to creators of PerformanceAnalytics, who included cute chart.Boxplot wrapper inspired by Tufte work. I simply extracted some elements of function to keep it even simpler. Just attach 'cw' sample data above from @gsk3.

attach(cw)
par(mfrow=c(1,3))
boxplot(weight~Time, horizontal = F, main = "", xlab="Time", ylab="Weight", 
        pars = list(boxcol = "white", medlty = "blank", medpch=16, medcex = 1.3, 
        whisklty = c(1, 1), staplelty = "blank", outcex = 0.5), axes = FALSE)
axis(1,at=1:4,label=c(1:4))
axis(2)
boxplot(weight~Chick, horizontal = F, main = "", xlab = "Chick", 
        ylab = "", pars = list(boxcol = "white", medlty = "blank", medpch=16, 
        medcex = 1.3, whisklty = c(1, 1), staplelty = "blank", outcex = 0.5), 
        axes = FALSE)
axis(1,at=1:3,label=c("A","B","C"))
boxplot(weight~Diet, horizontal = F, main = "", xlab = "Diet", ylab = "", 
        pars = list(boxcol = "white", medlty = "blank", medpch=16, medcex = 1.3, 
        whisklty = c(1, 1), staplelty = "blank", outcex = 0.5), axes = FALSE)
axis(1,at=1:4,label=c("LoFat","HiFat","LoProt","HiProt"))

enter image description here

Scleroprotein answered 28/11, 2011 at 20:57 Comment(1)
Nicely done. And yes, definitely more Tufte-esque than the others.Lenzi
D
15

You apparently wanted just a vertical version, so I took the panel.bwplot code, stripped out all the non-essentials such as the box and the cap, and set horizontal=FALSE in the arguments and created a panel.tuftebxp function. Also set the cex of the points at half of the default. There are still quite a few of options left that could be adjusted to your tastes. The "numeric" factor names for "Time" look sloppy but I figure the "proof of concept" is clear and you can clean up what is important to you:

panel.tuftebxp <- 
function (x, y, box.ratio = 1, box.width = box.ratio/(1 + box.ratio), horizontal=FALSE,
    pch = box.dot$pch, col = box.dot$col, 
    alpha = box.dot$alpha, cex = box.dot$cex, font = box.dot$font, 
    fontfamily = box.dot$fontfamily, fontface = box.dot$fontface, 
    fill = box.rectangle$fill, varwidth = FALSE, notch = FALSE, 
    notch.frac = 0.5, ..., levels.fos = if (horizontal) sort(unique(y)) else sort(unique(x)), 
    stats = boxplot.stats, coef = 1.5, do.out = TRUE, identifier = "bwplot") 
{
    if (all(is.na(x) | is.na(y))) 
        return()
    x <- as.numeric(x)
    y <- as.numeric(y)
    box.dot <- trellis.par.get("box.dot")
    box.rectangle <- trellis.par.get("box.rectangle")
    box.umbrella <- trellis.par.get("box.umbrella")
    plot.symbol <- trellis.par.get("plot.symbol")
    fontsize.points <- trellis.par.get("fontsize")$points
    cur.limits <- current.panel.limits()
    xscale <- cur.limits$xlim
    yscale <- cur.limits$ylim
    if (!notch) 
        notch.frac <- 0
    #removed horizontal code
     blist <- tapply(y, factor(x, levels = levels.fos), stats, 
            coef = coef, do.out = do.out)
        blist.stats <- t(sapply(blist, "[[", "stats"))
        blist.out <- lapply(blist, "[[", "out")
        blist.height <- box.width
        if (varwidth) {
            maxn <- max(table(x))
            blist.n <- sapply(blist, "[[", "n")
            blist.height <- sqrt(blist.n/maxn) * blist.height
        }
        blist.conf <- if (notch) 
            sapply(blist, "[[", "conf")
        else t(blist.stats[, c(2, 4), drop = FALSE])
        ybnd <- cbind(blist.stats[, 3], blist.conf[2, ], blist.stats[, 
            4], blist.stats[, 4], blist.conf[2, ], blist.stats[, 
            3], blist.conf[1, ], blist.stats[, 2], blist.stats[, 
            2], blist.conf[1, ], blist.stats[, 3])
        xleft <- levels.fos - blist.height/2
        xright <- levels.fos + blist.height/2
        xbnd <- cbind(xleft + notch.frac * blist.height/2, xleft, 
            xleft, xright, xright, xright - notch.frac * blist.height/2, 
            xright, xright, xleft, xleft, xleft + notch.frac * 
                blist.height/2)
        xs <- cbind(xbnd, NA_real_)
        ys <- cbind(ybnd, NA_real_)
        panel.segments(rep(levels.fos, 2), c(blist.stats[, 2], 
            blist.stats[, 4]), rep(levels.fos, 2), c(blist.stats[, 
            1], blist.stats[, 5]), col = box.umbrella$col, alpha = box.umbrella$alpha, 
            lwd = box.umbrella$lwd, lty = box.umbrella$lty, identifier = paste(identifier, 
                "whisker", sep = "."))

        if (all(pch == "|")) {
            mult <- if (notch) 
                1 - notch.frac
            else 1
            panel.segments(levels.fos - mult * blist.height/2, 
                blist.stats[, 3], levels.fos + mult * blist.height/2, 
                blist.stats[, 3], lwd = box.rectangle$lwd, lty = box.rectangle$lty, 
                col = box.rectangle$col, alpha = alpha, identifier = paste(identifier, 
                  "dot", sep = "."))
        }
        else {
            panel.points(x = levels.fos, y = blist.stats[, 3], 
                pch = pch, col = col, alpha = alpha, cex = cex, 
                 identifier = paste(identifier, 
                  "dot", sep = "."))
        }
        panel.points(x = rep(levels.fos, sapply(blist.out, length)), 
            y = unlist(blist.out), pch = plot.symbol$pch, col = plot.symbol$col, 
            alpha = plot.symbol$alpha, cex = plot.symbol$cex*0.5, 
            identifier = paste(identifier, "outlier", sep = "."))

}
bwplot(weight ~ Diet + Time + Chick, data=cw, panel= 
         function(x,y, ...) panel.tuftebxp(x=x,y=y,...))

enter image description here

Diphenylhydantoin answered 7/8, 2011 at 15:46 Comment(0)
M
11

Here is the customary ggplot solution (or rather a hack with scope for elegance)

require(ggplot2)

# melt the data frame
cw2 = melt(cw, id = 'weight')

# create a data frame with boxplot stats
cw3 = ddply(cw2, .(value, variable), function(df) boxplot.stats(df$weight)$stats)

# generate the plot
ggplot(cw2, aes(value, weight)) +
  geom_boxplot(fill = 'gray90', colour = 'gray90', alpha = 0) +      
  geom_segment(data = cw3, aes(xend = value, y = V1, yend = V2)) + 
  geom_segment(data = cw3, aes(xend = value, y = V4, yend = V5)) + 
  geom_point(data = cw3, aes(y = V3), size = 3) + 
  facet_wrap(~ variable, scales = 'free_x', nrow = 1)      

enter image description here

Monochromatism answered 7/8, 2011 at 16:53 Comment(1)
Also lovely. But no ggbwTufte function sadly.Upwind
U
8

Here's my very kludgy function for this. Unfortunately, while it references a panel.tuftebox, I wrote this code in my first few months of learning R for a very specific purpose (and therefore, sadly, with no intent to generalize it), and therefore it never got written as a separate panel function.

library(lattice)
library(taRifx)
compareplot(~weight | Diet * Time * Chick, 
  data.frame=cw , 
  main = "Chick Weights",
  box.show.mean=FALSE,
  box.show.whiskers=FALSE,
  box.show.box=FALSE
  )

compareplot

Upwind answered 7/8, 2011 at 15:57 Comment(0)
R
7

There are functions for making a few Tufte-style plots in the package ggthemes by Jeffrey Arnold, available on github. The package is a bunch of themes for ggplot and includes:

geom_tufterangeframe: Tufte's range frame

geom_tufteboxplot: Tufte's box plot

theme_tufte: a minimal ink based on Tufte's The Visual Display of Quantitative Information.

Here's an example of the Tufte minimal boxplot from the package's README on github:

enter image description here

Rittenhouse answered 1/1, 2013 at 19:24 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.