setpgid
POSIX C process group minimal example
It might be easier to understand with a minimal runnable example of the underlying API.
This illustrates how the signal does get sent to the child, if the child didn't change its process group with setpgid
.
main.c
#define _XOPEN_SOURCE 700
#include <assert.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
volatile sig_atomic_t is_child = 0;
void signal_handler(int sig) {
char parent_str[] = "sigint parent\n";
char child_str[] = "sigint child\n";
signal(sig, signal_handler);
if (sig == SIGINT) {
if (is_child) {
write(STDOUT_FILENO, child_str, sizeof(child_str) - 1);
} else {
write(STDOUT_FILENO, parent_str, sizeof(parent_str) - 1);
}
}
}
int main(int argc, char **argv) {
pid_t pid, pgid;
(void)argv;
signal(SIGINT, signal_handler);
signal(SIGUSR1, signal_handler);
pid = fork();
assert(pid != -1);
if (pid == 0) {
is_child = 1;
if (argc > 1) {
/* Change the pgid.
* The new one is guaranteed to be different than the previous, which was equal to the parent's,
* because `man setpgid` says:
* > the child has its own unique process ID, and this PID does not match
* > the ID of any existing process group (setpgid(2)) or session.
*/
setpgid(0, 0);
}
printf("child pid, pgid = %ju, %ju\n", (uintmax_t)getpid(), (uintmax_t)getpgid(0));
assert(kill(getppid(), SIGUSR1) == 0);
while (1);
exit(EXIT_SUCCESS);
}
/* Wait until the child sends a SIGUSR1. */
pause();
pgid = getpgid(0);
printf("parent pid, pgid = %ju, %ju\n", (uintmax_t)getpid(), (uintmax_t)pgid);
/* man kill explains that negative first argument means to send a signal to a process group. */
kill(-pgid, SIGINT);
while (1);
}
GitHub upstream.
Compile with:
gcc -ggdb3 -O0 -std=c99 -Wall -Wextra -Wpedantic -o setpgid setpgid.c
Run without setpgid
Without any CLI arguments, setpgid
is not done:
./setpgid
Possible outcome:
child pid, pgid = 28250, 28249
parent pid, pgid = 28249, 28249
sigint parent
sigint child
and the program hangs.
As we can see, the pgid of both processes is the same, as it gets inherited across fork
.
Then whenever you hit Ctrl+C it outputs again:
sigint parent
sigint child
This shows how:
- to send a signal to an entire process group with
kill(-pgid, SIGINT)
- Ctrl+C on the terminal sends a kill to the entire process group by default
Quit the program by sending a different signal to both processes, e.g. SIGQUIT with Ctrl+\.
Run with setpgid
If you run with an argument, e.g.:
./setpgid 1
then the child changes its pgid, and now only a single sigint gets printed every time from the parent only:
child pid, pgid = 16470, 16470
parent pid, pgid = 16469, 16469
sigint parent
And now, whenever you hit Ctrl+C only the parent receives the signal as well:
sigint parent
You can still kill the parent as before with a SIGQUIT (Ctrl+\) however the child now has a different PGID, and does not receive that signal! This can seen from:
ps aux | grep setpgid
You will have to kill it explicitly with:
kill -9 16470
This makes it clear why signal groups exist: otherwise we would get a bunch of processes left over to be cleaned manually all the time.
Tested on Ubuntu 18.04.