I have trouble incorporating custom expected returns in Portfolio Analytics package. Usually expected returns are some professional expectations / views or calculated separately from fundamental indicators. Portfolio Analytics allow to create custom moments function to calculate moments from past returns, but I don't understand how to incorporate already calculated returns to optimization problem. Any help is appreciated and here is small example dataset:
#Download package and sample returns
library(PortfolioAnalytics)
library(PerformanceAnalytics)
data(edhec)
returns <- tail(edhec[,1:4], 10)
#Example expected return xts that I'm usually working with. Calculated separately.
N <- 10
M <- 4
views <- as.xts(data.frame(matrix(rnorm(N*M,mean=0,sd=0.05), N, M)), order.by = index(returns))
colnames(views) <- colnames(returns)
Lets create basic portfolio with some objectives.
pf <- portfolio.spec(assets = colnames(returns))
pf <- add.constraint(portfolio = pf, type = "full_investment")
pf <- add.constraint(portfolio = pf, type = "long_only")
pf <- add.objective(portfolio = pf, type = "return", name = "mean")
pf <- add.objective(portfolio = pf, type = "risk", name = "StdDev")
Now I would like to optimize portfolio pf at each period and take account views (expected returns for that period) but I'm running out of ideas at this point.